826 resultados para Self-organizing model
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.
Resumo:
Smart cameras perform on-board image analysis, adapt their algorithms to changes in their environment, and collaborate with other networked cameras to analyze the dynamic behavior of objects. A proposed computational framework adopts the concepts of self-awareness and self-expression to more efficiently manage the complex tradeoffs among performance, flexibility, resources, and reliability. The Web extra at http://youtu.be/NKe31-OKLz4 is a video demonstrating CamSim, a smart camera simulation tool, enables users to test self-adaptive and self-organizing smart-camera techniques without deploying a smart-camera network.
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
This thesis, part of the research line "Work, Society and Education" analyzes, in a dialectical perspective, in the light of Tragtenberg´s studies, the conception of subject of schoolwork, considering the organization and the complexity of this context and inviting the investigative gaze. Our hypothesis is that the workers of education have, in the schoolwork, a fragile politicization field and overcoming the installed model, accepting themselves as executers with self-organizing difficulties, distanced from the effective participation, autonomy and self-management. We consider studies on the logic of the work, believing that the understanding of schoolwork is constitute into the current societal model, in whom its bureaucratic and hierarchical matrix, linked to articulated / articulators of the dominant socio-economic class interests. Scholars such as Braverman, Frigotto and Tragtenberg, among others, are important contributions to this reflection. We have analyzed the logic of the work also in dialogue with pedagogies differentiated, among them, the Libertarian defended by Tragtenberg, aiming to understand the conceptions and practices of the subjects involved. We accomplished a bibliographical critical analysis, in a dialectical character, focusing on the categories: work, schoolwork, control, autonomy and self-management, in order to understand the complexity of the praxis in study, dialoguing with the pillars categories historicity, contradiction and totality, which transversalize the developed analysis. The consideration of these concepts allows us to uncover the dominant bureaucratic structure and its possible overcoming fields. We believe contribute to problematizing and proposers studies, reflections and discussions, strengthening debates, deconstructing naturalizations and contributing to the political process of the subjects.
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
A self-organising model of macadamia, expressed using L-Systems, was used to explore aspects of canopy management. A small set of parameters control the basic architecture of the model, with a high degree of self-organisation occurring to determine the fate and growth of buds. Light was sensed at the leaf level and used to represent vigour and accumulated basipetally. Buds also sensed light so as to provide demand in the subsequent redistribution of the vigour. Empirical relationships were derived from a set of 24 completely digitised trees after conversion to multiscale tree graphs (MTG) and analysis with the OpenAlea software library. The ability to write MTG files was embedded within the model so that various tree statistics could be exported for each run of the model. To explore the parameter space a series of runs was completed using a high-throughput computing platform. When combined with MTG generation and analysis with OpenAlea it provided a convenient way in which thousands of simulations could be explored. We allowed the model trees to develop using self-organisation and simulated cultural practices such as hedging, topping, removal of the leader and limb removal within a small representation of an orchard. The model provides insight into the impact of these practices on potential for growth and the light distribution within the canopy and to the orchard floor by coupling the model with a path-tracing program to simulate the light environment. The lessons learnt from this will be applied to other evergreen, tropical fruit and nut trees.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
We present and evaluate a novel supervised recurrent neural network architecture, the SARASOM, based on the associative self-organizing map. The performance of the SARASOM is evaluated and compared with the Elman network as well as with a hidden Markov model (HMM) in a number of prediction tasks using sequences of letters, including some experiments with a reduced lexicon of 15 words. The results were very encouraging with the SARASOM learning better and performing with better accuracy than both the Elman network and the HMM.
Resumo:
Holacracy as an alternative to organisations governance A *TRS event, Room P1.2 (Fernando Pessoa Hall), University Fernando Pessoa 16th, November, 2016, Luis Borges Gouveia This presentation introduce holacracy and discuss its use as an alternative to organize people within a corporate environment. A holacracy is a governance structure characterized by a distribution of power among self-organizing groups, rather than the top-down authority in the typical hierarchical corporate culture model. A holacracy provides a flat management structure that distributes authority. The goal of a holacracy is to ensure that those responsible for completing the work have the authority to decide how that work should be carried out. Holacracy benefits are the promises to harness agility, transparency, accountability, employee engagement and innovation. It also potentiates greater efficiency. Main critics are that the model do not allow for sufficient lateral communication. Also, it use is still emerging and we do not have sufficient evidence on holacracy advantages to rely on its promises
Resumo:
Este trabajo se inscribe en uno de los grandes campos de los estudios organizacionales: la estrategia. La perspectiva clásica en este campo promovió la idea de que proyectarse hacia el futuro implica diseñar un plan (una serie de acciones deliberadas). Avances posteriores mostraron que la estrategia podía ser comprendida de otras formas. Sin embargo, la evolución del campo privilegió en alguna medida la mirada clásica estableciendo, por ejemplo, múltiples modelos para ‘formular’ una estrategia, pero dejando en segundo lugar la manera en la que esta puede ‘emerger’. El propósito de esta investigación es, entonces, aportar al actual nivel de comprensión respecto a las estrategias emergentes en las organizaciones. Para hacerlo, se consideró un concepto opuesto —aunque complementario— al de ‘planeación’ y, de hecho, muy cercano en su naturaleza a ese tipo de estrategias: la improvisación. Dado que este se ha nutrido de valiosos aportes del mundo de la música, se acudió al saber propio de este dominio, recurriendo al uso de ‘la metáfora’ como recurso teórico para entenderlo y alcanzar el objetivo propuesto. Los resultados muestran que 1) las estrategias deliberadas y las emergentes coexisten y se complementan, 2) la improvisación está siempre presente en el contexto organizacional, 3) existe una mayor intensidad de la improvisación en el ‘como’ de la estrategia que en el ‘qué’ y, en oposición a la idea convencional al respecto, 4) se requiere cierta preparación para poder improvisar de manera adecuada.
Resumo:
This dissertation consists of three papers. The first paper "Managing the Workload: an Experiment on Individual Decision Making and Performance" experimentally investigates how decision-making in workload management affects individual performance. I designed a laboratory experiment in order to exogenously manipulate the schedule of work faced by each subject and to identify its impact on final performance. Through the mouse click-tracking technique, I also collected interesting behavioral measures on organizational skills. I found that a non-negligible share of individuals performs better under externally imposed schedules than in the unconstrained case. However, such constraints are detrimental for those good in self-organizing. The second chapter, "On the allocation of effort with multiple tasks and piecewise monotonic hazard function", tests the optimality of a scheduling model, proposed in a different literature, for the decisional problem faced in the experiment. Under specific assumptions, I find that such model identifies what would be the optimal scheduling of the tasks in the Admission Test. The third paper "The Effects of Scholarships and Tuition Fees Discounts on Students' Performances: Which Monetary Incentives work Better?" explores how different levels of monetary incentives affect the achievement of students in tertiary education. I used a Regression Discontinuity Design to exploit the assignment of different monetary incentives, to study the effects of such liquidity provision on performance outcomes, ceteris paribus. The results show that a monetary increase in the scholarships generates no effect on performance since the achievements of the recipients are all centered near the requirements for non-returning the benefit. Secondly, students, who are actually paying some share of the total cost of college attendance, surprisingly, perform better than those whose cost is completely subsidized. A lower benefit, relatively to a higher aid, it motivates students to finish early and not to suffer the extra cost of a delayed graduation.
Resumo:
This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
O objectivo deste trabalho consiste em avaliar os benefícios das Self Organizing Networks (SON), no que concerne ao planeamento e optimização de redes Long Term Evolution (LTE), não só através do seu estudo, como também através do desenvolvimento e teste de algoritmos, que permitem avaliar o funcionamento de algumas das suas principais funções. O estudo efectuado sobre as SON permitiu identificar um conjunto de funções, tais como a atribuição automática de Physical Cell Id (PCI), o Automatic Neighbour Relation (ANR) e a optimização automática de parâmetros de handover, que permitem facilitar ou mesmo substituir algumas das tarefas mais comuns em planeamento e optimização de redes móveis celulares, em particular, redes LTE. Recorrendo a um simulador LTE destinado à investigação académica, em código aberto e desenvolvido em Matlab®, foi desenvolvido um conjunto de algoritmos que permitiram a implementação das funções em questão. Para além das funções implementadas, foram também introduzidas alterações que conferem a este simulador a capacidade de representar e simular redes reais, permitindo uma análise mais coerente dos algoritmos desenvolvidos. Os resultados obtidos, para além de evidenciarem claramente o benefício dos algoritmos desenvolvidos, foram ainda comparados com os obtidos pela ferramenta profissional de planeamento e optimização Atoll®, tendo-se verificado a franca proximidade de desempenho em algumas das funções. Finalmente, foi desenvolvida uma interface gráfica que permite o desenho, configuração e simulação de cenários, bem como a análise de resultados.