986 resultados para Self-organized Criticality
Resumo:
A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.
Resumo:
TiO2 nanotubes (NTs) have been widely used for a number of applications including solar cells, photo(electro)chromic devices, and photocatalysis. Their quasi-one-dimensional morphology has the advantage of a fast electron transport although they have a relatively reduced interfacial area compared with nanoparticulate films. In this study, vertically oriented, smooth TiO2 NT arrays fabricated by anodization are decorated with ultrathin anatase nanowires (NWs). This facile modification, performed by chemical bath deposition, allows to create an advantageous self-organized structure that exhibits remarkable properties. On one hand, the huge increase in the electroactive interfacial area induces an improvement by 1 order of magnitude in the charge accumulation capacity. On the other hand, the modified NT arrays display larger photocurrents for water and oxalic acid oxidation than bare NTs. Their particular morphology enables a fast transfer of photogenerated holes but also efficient mass and electron transport. The importance of a proper band energy alignment for electron transfer from the NWs to the NTs is evidenced by comparing the behavior of these electrodes with that of NTs modified with rutile NWs. The NT-NW self-organized architecture allows for a precise design and control of the interfacial surface area, providing a material with particularly attractive properties for the applications mentioned above.
Resumo:
El objetivo principal de la presente investigación ha sido desarrollar una nueva clase de materiales nanocompuestos orgánicos-inorgánicos basados en la capacidad de los copolímeros de bloque de auto-organizarse promoviendo la dispersión de nanopartículas, así como relacionar las diferentes morfologías obtenidas con las propiedades finales de los nanocompuestos. Para generar la nanoestructuración de estos nanocompuestos basados en copolímeros de bloque, como el poli(estireno-b-isopreno-b-estireno) (SIS) y el poli(estireno-b-butadieno-b-estireno) (SBS) en nanopartículas de plata, se han utilizado los conceptos de compatibilización y confinamiento. Es decir, las nanopartículas inorgánicas se confinaron en una sola fase del copolímero de bloque mediante tratamientos superficiales y su funcionalización física. En particular, se utilizaron surfactantes (el cloruro de tetrametilamonio, TMAC, y el dodecanotiol, DT) para favorecer la interacción entre las nanopartículas inorgánicas y la matriz polimérica. Teniendo en cuenta los cálculos teóricos de los parámetros de solubilidad obtenidos mediante la teoría de Hoftizer-Van Krevelen, y la electronegatividad propia de los diferentes elementos, los dos surfactantes elegidos tienen una muy buena compatibilidad con el bloque de estireno favoreciendo la localización de las nanopartículas de plata en este bloque.
Resumo:
Lectures considered before the "Joint committee on education", a self-organized body of Chicago citizens. Foreword signed: E. S. D. [i. e. Mrs. E. S. Dummer] for the committee.
Resumo:
"References" at end of most of the chapters.
Resumo:
Lectures delivered before the "Joint committee on education," a self-organized body of Chicago citizens. Foreword signed: E.S.D. [i.e. Mrs. E. S. Dumer] for the committee.
Resumo:
The dynamics of fibre slippage within general non-bonded fibrous assemblies is studied in the situation where the assembly is subjected to general small cyclic loads. Two models are proposed. The first is applicable when the general cyclic loading is complemented by an occasional tugging force on one end of a fibre, which causes it to gradually withdraw from the assembly, such as might occur during the pilling of a textile. The second considers the situation in which the cyclic perturbations act around a constant background load applied to the assembly. The dynamics is reminiscent of self-organized critical behaviour. This model is applied to predict the progressive elongation of a single yarn during weaving.
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.
Resumo:
Much research pursues machine intelligence through better representation of semantics. What is semantics? People in different areas view semantics from different facets although it accompanies interaction through civilization. Some researchers believe that humans have some innate structure in mind for processing semantics. Then, what the structure is like? Some argue that humans evolve a structure for processing semantics through constant learning. Then, how the process is like? Humans have invented various symbol systems to represent semantics. Can semantics be accurately represented? Turing machines are good at processing symbols according to algorithms designed by humans, but they are limited in ability to process semantics and to do active interaction. Super computers and high-speed networks do not help solve this issue as they do not have any semantic worldview and cannot reflect themselves. Can future cyber-society have some semantic images that enable machines and individuals (humans and agents) to reflect themselves and interact with each other with knowing social situation through time? This paper concerns these issues in the context of studying an interactive semantics for the future cyber-society. It firstly distinguishes social semantics from natural semantics, and then explores the interactive semantics in the category of social semantics. Interactive semantics consists of an interactive system and its semantic image, which co-evolve and influence each other. The semantic worldview and interactive semantic base are proposed as the semantic basis of interaction. The process of building and explaining semantic image can be based on an evolving structure incorporating adaptive multi-dimensional classification space and self-organized semantic link network. A semantic lens is proposed to enhance the potential of the structure and help individuals build and retrieve semantic images from different facets, abstraction levels and scales through time.
Resumo:
Service-based systems are applications built by composing pre-existing services. During design time and according to the specifications, a set of services is selected. Both, service providers and consumers exist in a service market that is constantly changing. Service providers continuously change their quality of services (QoS), and service consumers can update their specifications according to what the market is offering. Therefore, during runtime, the services are periodically and manually checked to verify if they still satisfy the specifications. Unfortunately, humans are overwhelmed with the degree of changes exhibited by the service market. Consequently, verification of the compliance specification and execution of the corresponding adaptations when deviations are detected cannot be carried out in a manual fashion. In this work, we propose a framework to enable online awareness of changes in the service market in both consumers and providers by representing them as active software agents. At runtime, consumer agents concretize QoS specifications according to the available market knowledge. Services agents are collectively aware of themselves and of the consumers' requests. Moreover, they can create and maintain virtual organizations to react actively to demands that come from the market. In this paper we show preliminary results that allow us to conclude that the creation and adaptation of service-based systems can be carried out by a self-organized service market system. © 2012 IEEE.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.
Resumo:
When designing a practical swarm robotics system, self-organized task allocation is key to make best use of resources. Current research in this area focuses on task allocation which is either distributed (tasks must be performed at different locations) or sequential (tasks are complex and must be split into simpler sub-tasks and processed in order). In practice, however, swarms will need to deal with tasks which are both distributed and sequential. In this paper, a classic foraging problem is extended to incorporate both distributed and sequential tasks. The problem is analysed theoretically, absolute limits on performance are derived, and a set of conditions for a successful algorithm are established. It is shown empirically that an algorithm which meets these conditions, by causing emergent cooperation between robots can achieve consistently high performance under a wide range of settings without the need for communication. © 2013 IEEE.
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^