975 resultados para Selectivity
Resumo:
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates l-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for l-aspartate over d-aspartate and l-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Resumo:
A series of N6-bicyclic and N6-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed that the most selective, high potency ligands were achieved through N6-adamantyl substitution in combination with 5′-N-ethylcarboxamido or 5′-hydroxymethyl groups. In addition, we determined that 5′-(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction with the A1R. Some selected compounds were also tested on A1R and A3R in mammalian cells revealing that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes, these compounds might have therapeutic potential.
Resumo:
A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.
Resumo:
BACKGROUND: Knowledge of pesticide selectivity to natural enemies is necessary for a successful implementation of biological and chemical control methods in integrated pest management (IPM) programs. Diacylhydrazine (DAH)-based ecdysone agonists also known as molting-accelerating compounds (MACs) are considered a selective group of insecticides, and their compatibility with predatory Heteroptera, which are used as biological control agents, is known. However, their molecular mode of action has not been explored in beneficial insects such as Orius laevigatus (Fieber) (Hemiptera: Anthocoridae). RESULTS: In this project in vivo toxicity assays demonstrated that the DAH-based RH-5849, tebufenozide and methoxyfenozide have no toxic effect against O. laevigatus. The ligand-binding domain (LBD) of the ecdysone receptor (EcR) of O. laevigatus was sequenced and a homology protein model was constructed which confirmed a cavity structure with 12 ?-helixes, harboring the natural insect molting hormone 20-hydroxyecdysone. However, docking studies showed that a steric clash occurred for the DAH-based insecticides due to a restricted extent of the ligand-binding cavity of the EcR of O. laevigatus. CONCLUSIONS: The insect toxicity assays demonstrated that MACs are selective for O. laevigatus. The modeling/docking experiments are indications that these pesticides do not bind with the LBD-EcR of O. laevigatus and support that they show no biological effects in the predatory bug. These data help in explaining the compatible use of MACs together with predatory bugs in IPM programs. Keywords: Orius laevigatus, selectivity, diacylhydrazine insecticides, ecdysone receptor, homology modelling, docking studies.
Resumo:
The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.
Resumo:
The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.
Resumo:
Aflatoxin B1 (AFB1) is a potent human carcinogen implicated in the etiology of hepatocellular carcinoma. Upon metabolic activation to the reactive epoxide, AFB1 forms DNA adducts primarily at the N7 position of guanines. To elucidate more fully the molecular mechanism of AFB1-induced mutagenesis, an intercalation inhibitor was designed to probe the effects of intercalation by AFB1 epoxide on its reaction with DNA. DNA duplexes were prepared consisting of a target strand containing multiple potentially reactive guanines and a nontarget strand containing a cis-syn thymidine-benzofuran photoproduct. Because the covalently linked benzofuran moiety physically occupies an intercalation site, we reasoned that such a site would be rendered inaccessible to AFB1 epoxide. By strategic positioning of this intercalation inhibitor in the intercalation site 5′ to a specific guanine, the adduct yield at that site was greatly diminished, indicating that intercalation by AFB1 epoxide contributes favorably to adduct formation. Using this approach it has been possible to simplify the production of site-specifically modified oligonucleotides containing AFB1 adducts in the sequence context of a p53 mutational hotspot. Moreover, we report herein isolation of site-specifically AFB1-modified oligonucleotides in sequences containing multiple guanines. Use of intercalation inhibitors will facilitate both investigation of the ability of other carcinogens to intercalate into DNA and the synthesis of specific carcinogen-DNA adducts.
Resumo:
Compound 1 (F), a nonpolar nucleoside analog that is isosteric with thymidine, has been proposed as a probe for the importance of hydrogen bonds in biological systems. Consistent with its lack of strong H-bond donors or acceptors, F is shown here by thermal denaturation studies to pair very poorly and with no significant selectivity among natural bases in DNA oligonucleotides. We report the synthesis of the 5′-triphosphate derivative of 1 and the study of its ability to be inserted into replicating DNA strands by the Klenow fragment (KF, exo− mutant) of Escherichia coli DNA polymerase I. We find that this nucleotide derivative (dFTP) is a surprisingly good substrate for KF; steady-state measurements indicate it is inserted into a template opposite adenine with efficiency (Vmax/Km) only 40-fold lower than dTTP. Moreover, it is inserted opposite A (relative to C, G, or T) with selectivity nearly as high as that observed for dTTP. Elongation of the strand past F in an F–A pair is associated with a brief pause, whereas that beyond A in the inverted A–F pair is not. Combined with data from studies with F in the template strand, the results show that KF can efficiently replicate a base pair (A–F/F–A) that is inherently very unstable, and the replication occurs with very high fidelity despite a lack of inherent base-pairing selectivity. The results suggest that hydrogen bonds may be less important in the fidelity of replication than commonly believed and that nucleotide/template shape complementarity may play a more important role than previously believed.
Resumo:
The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.
Resumo:
The mechanoelectrical-transduction channel of the hair cell is permeable to both monovalent and divalent cations. Because Ca2+ entering through the transduction channel serves as a feedback signal in the adaptation process that sets the channel’s open probability, an understanding of adaptation requires estimation of the magnitude of Ca2+ influx. To determine the Ca2+ current through the transduction channel, we measured extracellular receptor currents with transepithelial voltage-clamp recordings while the apical surface of a saccular macula was bathed with solutions containing various concentrations of K+, Na+, or Ca2+. For modest concentrations of a single permeant cation, Ca2+ carried much more receptor current than did either K+ or Na+. For higher cation concentrations, however, the flux of Na+ or K+ through the transduction channel exceeded that of Ca2+. For mixtures of Ca2+ and monovalent cations, the receptor current displayed an anomalous mole-fraction effect, which indicates that ions interact while traversing the channel’s pore. These results demonstrate not only that the hair cell’s transduction channel is selective for Ca2+ over monovalent cations but also that Ca2+ carries substantial current even at low Ca2+ concentrations. At physiological cation concentrations, Ca2+ flux through transduction channels can change the local Ca2+ concentration in stereocilia in a range relevant for the control of adaptation.
Resumo:
In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.
Resumo:
Interaction of the estrogen receptor/ligand complex with a DNA estrogen response element is known to regulate gene transcription. In turn, specific conformations of the receptor-ligand complex have been postulated to influence unique subsets of estrogen-responsive genes resulting in differential modulation and, ultimately, tissue-selective outcomes. The estrogen receptor ligands raloxifene and tamoxifen have demonstrated such tissue-specific estrogen agonist/antagonist effects. Both agents antagonize the effects of estrogen on mammary tissue while mimicking the actions of estrogen on bone. However, tamoxifen induces significant stimulation of uterine tissue whereas raloxifene does not. We postulate that structural differences between raloxifene and tamoxifen may influence the conformations of their respective receptor/ligand complexes, thereby affecting which estrogen-responsive genes are modulated in various tissues. These structural differences are 4-fold: (A) the presence of phenolic hydroxyls, (B) different substituents on the basic amine, (C) incorporation of the stilbene moiety into a cyclic benzothiophene framework, and (D) the imposition of a carbonyl “hinge” between the basic amine-containing side chain and the olefin. A series of raloxifene analogs that separately exemplify each of these differences have been prepared and evaluated in a series of in vitro and in vivo assays. This strategy has resulted in the development of a pharmacophore model that attributes the differences in effects on the uterus between raloxifene and tamoxifen to a low-energy conformational preference imparting an orthogonal orientation of the basic side chain with respect to the stilbene plane. This three-dimensional array is dictated by a single carbon atom in the hinge region of raloxifene. These data indicate that differences in tissue selective actions among benzothiophene and triarylethylene estrogen receptor modulators can be ascribed to discrete ligand conformations.
Resumo:
Local anesthetic antiarrhythmic drugs block Na+ channels and have important clinical uses. However, the molecular mechanism by which these drugs block the channel has not been established. The family of drugs is characterized by having an ionizable amino group and a hydrophobic tail. We hypothesized that the charged amino group of the drug may interact with charged residues in the channel’s selectivity filter. Mutation of the putative domain III selectivity filter residue of the adult rat skeletal muscle Na+ channel (μ1) K1237E increased resting lidocaine block, but no change was observed in block by neutral analogs of lidocaine. An intermediate effect on the lidocaine block resulted from K1237S and there was no effect from K1237R, implying an electrostatic effect of Lys. Mutation of the other selectivity residues, D400A (domain I), E755A (domain II), and A1529D (domain IV) allowed block by externally applied quaternary membrane-impermeant derivatives of lidocaine (QX314 and QX222) and accelerated recovery from block by internal QX314. Neo-saxitoxin and tetrodotoxin, which occlude the channel pore, reduced the amount of QX314 bound in D400A and A1529D, respectively. Block by outside QX314 in E755A was inhibited by mutation of residues in transmembrane segment S6 of domain IV that are thought to be part of an internal binding site. The results demonstrate that the Na+ channel selectivity filter is involved in interactions with the hydrophilic part of the drugs, and it normally limits extracellular access to and escape from their binding site just within the selectivity filter. Participation of the selectivity ring in antiarrhythmic drug binding and access locates this structure adjacent to the S6 segment.