985 resultados para Scalar field
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we discuss the Hamilton-Jacobi formalism for fields on the null-plane. The Real Scalar Field in (1+1) - dimensions is studied since in it lays crucial points that are presented in more structured fields as the Electromagnetic case. The Hamilton-Jacobi formalism leads to the equations of motion for these systems after computing their respective Generalized Brackets. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
We show the results and discussions of the study of a possible suppression of the extragalactic neutrino flux during its propagation due to a nonstandard interaction with a candidate field to dark matter. In particular, we show the study of neutrino interaction with an ultra-light scalar field. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a mechanism to reduce the ultra-high energy neutrino flux. We calculate both the cases of non-self-conjugate as well as self-conjugate ultra-light dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms, as absorption during propagation, for the reduction of the neutrino flux [1], © Published under licence by IOP Publishing Ltd.
Resumo:
In this letter we consider a specific model of braneworld with nonstandard dynamics diffused in the literature, specifically we focus our attention on the matter energy density, the energy of system, the Ricci scalar and the thin-brane limit. As the model is classically stable and capable of localize gravity, as a natural extension we address the issue of fermion localization of fermions on a thick brane constructed out from one scalar field with nonstandard kinetic terms coupled with gravity. The contribution of the nonstandard kinetic terms to the problem of fermion localization is analyzed. It is found that the simplest Yukawa coupling η ωφ ω supports the localization of fermions on the thick brane. It is shown that the zero mode for left-handed fermions can be localized on the thick brane depending on the values for the coupling constant η. Copyright © EPLA, 2013.
Resumo:
It has been proposed recently the existence of a non-minimal coupling between a canonical scalar field (quintessence) and gravity in the framework of teleparallel gravity, motivated by similar constructions in the context of General Relativity. The dynamics of the model, known as teleparallel dark energy, has been further developed, but no scaling attractor has been found. Here we consider a model in which the non-minimal coupling is ruled by a dynamically changing coefficient α≡f,φ/(f)1/2, with f(φ) an arbitrary function of the scalar field φ. It is shown that in this case the existence of scaling attractors is possible, which means that the universe will eventually enter these scaling attractors, regardless of the initial conditions. As a consequence, the cosmological coincidence problem could be alleviated without fine-tunings. © 2013 IOP Publishing Ltd and Sissa Medialab srl.
Resumo:
It is possible to show that there are three independent families of models describing a massive spin-2 particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described by a symmetric tensor. The three families have different local symmetries in the massless limit and can not be interconnected by any local field redefinition. We show here, however, that they can be related with the help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric tensor B μν=-Bνμ, a vector Aμ or a scalar field φ, corresponding to each of the three families. The addition of the extra field allows us to formulate master actions which interpolate between the symmetric Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli theory are not expected to be equivalent to possible local self-interacting theories built up on top of the two new families of massive spin-2 models. The approach used here may be useful to investigate dual (nonsymmetric) formulations of higher-spin particles. © 2013 American Physical Society.
Resumo:
A detailed dynamical analysis of the tachyonic teleparallel dark energy model, in which a noncanonical scalar field (tachyon field) is nonminimally coupled to gravitation, is performed. It is found that, when the nonminimal coupling is ruled by a dynamically changing coefficient α≡f ,φ/√f, with f(φ) an arbitrary function of the scalar field φ, the Universe may experience a field-matter-dominated era φMDE, in which it has some portions of the energy density of φ in the matter dominated era. This is the most significant difference in relation to the so-called teleparallel dark energy scenario, in which a canonical scalar field (quintessence) is nonminimally coupled to gravitation. © 2013 American Physical Society.
Resumo:
We attempt to incorporate inflation into a string theory realization of the chameleon mechanism. Previously, it was found that the volume modulus, stabilized by the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) and with the right choice of parameters, can generically work as a chameleon. In this paper, we ask whether inflation can be realized in the same model. We find that we need a large extra dimensions set-up, as well as a semi-phenomenological deformation of the Kähler potential in the quantum region. We also find that an additional KKLT term is required so that there are now two pieces to the potential, one which drives inflation in the early universe, and one which is responsible for chameleon screening at late times. These two pieces of the potential are separated by a large flat desert in field space. The scalar field must dynamically traverse this desert between the end of inflation and today, and we find that this can indeed occur under the right conditions. © 2013 SISSA, Trieste, Italy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG