927 resultados para Savanna biome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some invasive grasses have been reported to change fire behavior in invaded plant communities. Urochloa brizantha is an aggressive invasive grass in the Brazilian Cerrado, an ecosystem where fire is a common disturbance. We investigated the effects of U. brizantha on fire behavior in an open Cerrado physiognomy in Central Brazil. Using experimental burnings we compared fire behavior at both the community and the individual plant level in invaded (UJ) and non-invaded (NJ) areas burned in July. We also assessed the effect of fire season in invaded areas by comparing July (UJ) and October (UO) burnings. We evaluated the following variables: fuel load, fuel moisture, combustion efficiency, maximum fire temperature, flame height, and fire intensity. Additionally, we evaluated the temperatures reached under invasive and native grass tussocks in both seasons. Fuel load, combustion efficiency, and fire intensity were higher in NJ than in UJ, whilst flame height showed the opposite trend. Fuel amount and fire intensity were higher in October than in July. At the individual plant level, U. brizantha moisture was higher than that of native species, however, temperatures reaching ≥600 °C at ground level were more frequent under U. brizantha tussocks than under native grasses. At the community level, the invasive grass modified fire behavior towards lower intensity, lower burning efficiency, and higher flame height. These results provide essential information for the planning of prescribed burnings in invaded Cerrado areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize recent results from lake-sediment studies of Holocene fire-climate-vegetation interactions in Alaskan boreal ecosystems. At the millennial time scale, the most robust feature of these records is an increase in fire occurrence with the establishment of boreal forests dominated by Picea mariana: estimated mean fire-return intervals decreased from ≥300 yrs to as low as ∼80 yrs. This fire-vegetation relationship occurred at all sites in interior Alaska with charcoal-based fire reconstructions, regardless of the specific time of P. mariana arrival during the Holocene. The establishment of P. mariana forests was associated with a regional climatic trend toward cooler/wetter conditions. Because such climatic change should not directly enhance fire occurrence, the increase in fire frequency most likely reflects the influence of highly flammable P. mariana forests, which are more conducive to fire ignition and spread than the preceding vegetation types (tundra, and woodlands/forests dominated by Populus or Picea glauca). Increased lightning associated with altered atmospheric circulation may have also played a role in certain areas where fire frequency increased around 4000 calibrated years before present (BP) without an apparent increase in the abundance of P. mariana. When viewed together, the paleo-fire records reveal that fire histories differed among sites in the same modern fire regime and that the fire regime and plant community similar to those of today became established at different times. Thus the spatial array of regional fire regimes was non-static through the Holocene. However, the patterns and causes of the spatial variation remain largely unknown. Advancing our understanding of climate-fire-vegetation interactions in the Alaskan boreal biome will require a network of charcoal records across various ecoregions, quantitative paleoclimate reconstructions, and improved knowledge of how sedimentary charcoal records fire events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sjöstedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96% and the Simpson index of vascular plant diversity 81% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. ff...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial photography was used to determine the land use in a test area of the Nigerian savanna in 1950 and 1972. Changes in land use were determined and correlated with accessibility, appropriate low technology methods being used to make it easy to extend the investigation to other areas without incurring great expense. A test area of 750 sq km was chosen located in Kaduna State of Nigeria. The geography of the area is summarised together with the local knowledge which is essential for accurate photo interpretation. A land use classification was devised and tested for use with medium scale aerial photography of the savanna. The two sets of aerial photography at 1:25 000 scale were sampled using systematic dot grids. A dot density of 8 1/2 dots per sq km was calculated to give an acceptable estimate of land use. Problems of interpretation included gradation between categories, sample position uncertainty and personal bias. The results showed that in 22 years the amount of cultivated land in the test area had doubled while there had been a corresponding decrease in the amount of uncultivated land particularly woodland. The intensity of land use had generally increased. The distribution of land use changes was analysed and correlated with accessibility. Highly significant correlations were found for 1972 which had not existed in 1950. Changes in land use could also be correlated with accessibility. It was concluded that in the 22 year test period there had been intensification of land use, movement of human activity towards the main road, and a decrease in natural vegetation particularly close to the road. The classification of land use and the dot grid method of survey were shown to be applicable to a savanna test area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments The authors are very grateful to Mr. Fabiano Bielefeld Nardotto, owner of the Tabapuã dos Pireneus farm, for allowing our free movement around the farm and collection of soil samples, as well as providing information about soybean cultivation. The authors also thank Dr. Plínio de Camargo, who performed the isotopic analysis in the CENA laboratory at the University of São Paulo (USP). This work was supported by grants from the National Council of Technological and Scientific Development (CNPq), Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), and Foundation for Research Support of Distrito Federal (FAP-DF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, 2015.