636 resultados para Sandstone.
Resumo:
The Pacoima area is located on an isolated hill in the northeast section of the San Fernando, the northeast portion of the Pacoima Quadrangle, Los Angeles County, California. Within it are exposed more than 2300 feet of Tertiary rocks, which comprise three units of Middle Miocene (?) age, and approximately 950 feet of Jurassic (?) granite basement. The formations are characterized by their mode of occurrence, marine and terrestial origin, diverse lithology, and structural features.
The basement complex is composed of intrusive granite, small masses of granodiorite and a granodiorite gneiss with the development of schistosity in sections. During the long period of erosion of the metamorphics, the granitic rocks were exposed and may have provided clastic constituents for the overlying formations.
As a result of rapid sedimentation in a transitional environment, the Middle Miocene Twin Peaks formation was laid down unconformably on the granite. This formation is essentially a large thinning bed of gray to buff pebble and cobble conglomerate grading to coarse yellow sandstone. The contact of conglomerate and granite is characterized by its faulted and depositional nature.
Beds of extrusive andesite, basalt porphyry, compact vesicular amygdaloidal basalts, andesite breccia, interbedded feldspathic sands and clays of terrestial origin, and mudflow breccia comprise the Pacoima formation which overlies the Twin Peaks formation unconformably. A transgressing shallow sea accompanied settling of the region and initiated deposition of fine clastic sediments.
The marine Topanga (?) formation is composed of brown to gray coarse sandstone grading into interbedded buff sandstones and gray shales. Intrusions of rhyolitedacite and ash beds mark continued but sporatic volcanism during this period.
The area mapped represents an arch in the Tertiary sediments. Forces that produced the uplift of the granite structural high created stresses that were relieved by jointing and faulting. Vertical and horizontal movement along these faults has displaced beds, offset contacts and complicated their structure. Uplift and erosion have exposed the present sequence of beds which dip gently to the northeast. The isolated hill is believed to be in an early stage of maturity.
Resumo:
The region treated in the following report is a small area of about one square mile near Pacoima, California. It consists of a group of small hills that that form the western abutment of the Hansen Dam. It is underlain by a section of intrusives, sediments, and extrusives, which may be subdivided into four groups.
The oldest rocks form the Dimebere complex of Jurassic (?) plutonic rocks, pegmatites, and schists. Lying uncomformably on this is a series of alternating terrestrial sandstones and bassalts of Tertiary age. These are unconformably overlain in turn by the Hansen Dam formation, a series of marine shales and sandstone correlated with the Temblor by the fossil contact. Finally into these strata was intruded the Munglish andesite.
These strata form a shallow, plunging anticline, whose axis trends slightly east of north and lies in the center of the hills. The unconformities have been offset in several places by a series of faults apparently related to the anticline.
A complete outline of the geologic history is included in the report.
Resumo:
Este trabalho consistiu em aprimorar o entendimento da rota de migração do óleo no reservatório e verificar a possibilidade de variação da intensidade da biodegradação com as heterogeneidades existentes. Foram utilizadas como base para a dissertação sete amostras coletadas na bacia sedimentar do Paraná, no arenito asfáltico do Anhembi, afloramento da Fazenda Betumita. A Fazenda Betumita é considerada a ocorrência mais expressiva de óleo na região do alto estrutural do Anhembi, apresentando a maior acumulação de arenito asfáltico na borda leste da Bacia do Paraná. A ocorrência dos arenitos asfálticos na área de estudo é predominantemente por arenitos da Formação Pirambóia. Estes arenitos foram preenchidos por hidrocarbonetos relacionados ao sistema Irati-Pirambóia e são caracterizados como imaturo, devido ausência de n-alcanos e abundância de esteranos e terpanos. As amostras coletadas foram analisadas através da cromatografia líquida e gasosa e correlacionadas com a descrição das fácies do afloramento. A biodegradação do óleo apresentou a tendência de aumentar do topo para a base do afloramento, local caracterizado por fácies subaquosas, onde se encontra o contato óleo/água, propício para o crescimento dos microorganismos degradadoras de óleo. Na fácie de interduna, a biodegradação foi menor, pois este ambiente é caracterizado por partículas argilo-minerais e menores permo-porosidade, não propício para o crescimento de microorganismos capazes de degradar o óleo. Foi observada a presença de diasteranos e 25-norhopanos nas amostras coletadas, indicando que o óleo do afloramento está severamente biodegradado. Os esteranos apresentaram maior biodegradação na base do afloramento onde está o contato óleo/água e maior reposição de oxigênio pela infiltração de água meteórica, tornando-se ambiente propício para crescimento das bactérias aeróbicas tendendo a degradar preferencialmente os esteranos. Entretanto os hopanos apresentaram maior biodegradação no topo do afloramento, local com condições propícias para o crescimento das bactérias anaeróbicas, que tenderam a degradar preferencialmente os hopanos. As informações adquiridas nesta pesquisa são de grande relevância para o conhecimento na exploração do petróleo, pois geralmente esses conhecimentos não estão disponíveis nos dados de subsuperfície. Este trabalho servirá de parâmetro para o planejamento da produção e recuperação secundária e terciária de reservatórios com fácies sedimentares semelhantes da área estudada.
Resumo:
107 pag.
Resumo:
O principal objetivo deste trabalho foi à realização de um estudo geológico sobre os folhelhos fraturados da Formação Candeias que ocorrem em diferentes partes da Bacia do Recôncavo, sendo enfatizadas suas principais relações com a acumulação de petróleo. Este trabalho contempla, ainda, uma revisão bibliográfica acerca da evolução da campanha exploratória nesta bacia, desde seus primórdios, na década de trinta, além de uma análise sob as perspectivas na área de exploração e produção. A Bacia do Recôncavo, situada na região Nordeste do Brasil, está inserida numa grande bacia tafrogênica (Rifte abortado Recôncavo-Tucano-Jatobá), originada nos momentos iniciais de ruptura do paleocontinente Gondwana ocidental, no Eocretáceo, sob os campos de tensões que produziram o Oceano Atlântico. Em termos estratigráficos, a bacia guarda um importante registro geológico, compreendido por depósitos continentais (lacustres, fluvio-deltáicos, neríticos, eólicos e leques aluviais), sendo subdividido em seis seqüências sedimentares, referentes aos estágios pré-rifte e rifte. As principais acumulações de petróleo na bacia podem ser agrupadas em três grandes sistemas: pré-rifte, rifte-Candeias e rifte-Ilhas, representando plays exploratórios distintos. As perspectivas futuras para a Bacia do Recôncavo devem considerar a importância da identificação de novos plays exploratórios, através da caracterização de novos intervalos geradores e reservatórios, como é o caso dos folhelhos fraturados e do shale gas. Não menos importante é o desenvolvimento de novas técnicas de produção, aumentando o fator de recuperação de campos produtores.
Resumo:
This is the Investigation of rising nitrate concentrations in groundwater in the Eden Valley, Cumbria report produced by the Environment Agency in 2003. This report focuses on groundwater nitrate concentrations in the Eden Valley. Most boreholes in the Eden Valley had nitrate concentrations less than 20 mg/l but a significant number had higher concentrations, some exceeding the EC maximum admissible concentration for drinking water of 50 mg/l. The main objectives of this report were to investigate the causes of rising nitrate concentrations in groundwater in the Permo-Triassic sandstone aquifers of the Eden Valley area and provide sufficient understanding of the groundwater and surface water flow system, including the sources of the nitrate contamination and the processes controlling nitrate movement, so that possible management options for reversing this trend can be considered.
Resumo:
In many mining operations (e.g. excavation, drilling, tunnelling, rock crushing) metallic components are forced against abrasive rocks in a complex motion. This study examines the relative importance of combined rolling and sliding motion in the two-body abrasive wear of a low carbon tempered martensitic steel against rock counterfaces. A novel wear test rig has been used to vary the amount of rolling and sliding motion between a rotating steel cylinder and a counter-rotating sandstone (highly abrasive) or limestone (much less abrasive) disc. Weight-loss measurements reveal that the wear rate of the steel increases as the amount of motion against the rock counterface is reduced from pure sliding to approximately 50% sliding (and approximately 50% rolling). Scanning electron microscopy shows that when the amount of motion is reduced from pure sliding to approximately 50% sliding the topographical and sub-surface physical properties of the worn steel and rock surfaces are modified.
Resumo:
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel rill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults developed during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sandstone and reef carbonate reservoirs.
Resumo:
Based on analyses of more than 600 surface sediment samples together with large amounts of previous sedimentologic and hydrologic data, the characteristics of modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea (SYS) are expounded, and the controversial formation mechanism of muddy sediments is also discussed. The southern Yellow Sea shelf can be divided into low-energy sedimentary environment and high-energy sedimentary environment; the low-energy sedimentary environment can be further divided into cyclonic and anticyclonic ones, and the high-energy environment is subdivided into high-energy depositional and eroded environments. In the shelf low-energy environments, there developed muddy depositional system. In the central part of the southern Yellow Sea, there deposited the cold eddy sediments under the actions of a meso-scale cyclonic eddy (cold eddy), and in the southeast of the southern Yellow Sea, an anticyclonic eddy muddy depositional system (warm eddy sediment) was formed. These two types of sediments showed evident differences in grain size, sedimentation rate, sediment thickness and mineralogical characteristics. The high-energy environments were covered with sandy sediments on seabed; they appeared mainly in the west, south and northeast of the southern Yellow Sea. In the high-energy eroded environment, large amounts of sandstone gravels were distributed on seabed. In the high-energy depositional environment, the originally deposited fine materials (including clay and fine silt) were gradually re-suspended and then transported to a low-energy area to deposit again. In this paper, the sedimentation model of cyclonic and anticyclonic types of muddy sediments is established, and a systematic interpretation for the formation cause of muddy depositional systems in the southern Yellow Sea is given.
Resumo:
In recent years, with the discovery oil and gas reservoirs in volcanic rocks, the exploration and development of these reservoirs have attracted widespread attention because of the urgent need for increasing oil and gas production in the world and volcanic rocks has currently become an important exploration target in Liaohe depression. The study area of this dissertation is in the middle section of the easternern sag of Liaohe depression that have been confirmed by studying structural fractures, which constitute a key factor impacting volcanic rocks reservoirs. Substantial reserves and large production capacity in the areas with widely distributed volcanic rocks are important reasons for examining volcanic rocks in the study area. The study began with classification and experimental data analysis of volcanic rocks fractural formation, then focused on the mechanism of fracturing and the development of volcanic rocks structural fracture prediction methodology.and Lastly, predicted volcanic rocks structural fracture before drilling involved a comprehensive study of the petroleum geology of this area, which identified favorable traps thereby reducing exploration risks and promoting the exploration and development of volcanic rocks reservoirs. 3Dstress and 3Dmove software were applied to predict structural fracture by combining the core data, well-logging data and seismic data together and making the visualization of a fracture possible. Base on the detailed fracture prediction results, well OuO48 and well Ou52 were drilled and successfully provided a basis for high efficiency exploration and development of fractured reservoir in the middle section of the eastern sag. As a result of what have been done, a new round of exploration of volcanic rocks was developed. Well OU48 and well OU52 successfully drilled in this area resulted in the in-depth study of the mechanism of structural fracture formation, technological innovation of structural fracture prediction of volcanic rocks , which guided to oil and gas exploration effectively and made it possible for high production of volcanic rocks. By the end of August 2005, the cumulative oil and gas production of Ou48 block were 5.1606 × 104 t and 1271.3× 104 m3 respectively, which made outstanding contributions to the oilfield development. Above all this work not only promoted exploration and structural fracture prediction in volcanic rocks in Liaohe depression, but also applied to in the low-permeability and fractured sandstone reservoir.
Resumo:
Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.
Resumo:
With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.
Resumo:
Exploration study proves that East sea shelf basin embeds abundant hydrocarbon resources. However, the exploration knowledge of this area is very low. Many problems in exploration are encountered here. One of them is that the gas reservoir of this area, with rapid lateral variation, is deeply buried. Correlation of Impendence between sandstone, gas sand and shale is very poor. Another problem is that the S/N ratio of the seismic data is very low and multiples are relatively productive which seriously affect reservoir identification. Resolution of the seismic data reflected from 2500-3000 meter is rather low, which seriously affects the application of hydrocarbon direct identification (HDI) technology. This research established a fine geological & geophysical model based on drilling、well logging、geology&seismic data of East sea Lishui area. A Q value extraction method from seismic data is proposed. With this method, Q value inversion from VSP data and seismic data is performed to determine the subsurface absorption of this area. Then wave propagation and absorption rule are in control. Field acquisition design can be directed. And at the same time, with the optimization of source system, the performance of high resolution seismic acquisition layout system is enhanced. So the firm foundation is ensured for east sea gas reservoir exploration. For solving the multiple and amplitude preserving problems during the seismic data processing, wave equation pre-stack amplitude preservation migration and wave equation feedback iteratively multiple attenuation technologies are developed. Amplitude preservation migration technology can preserve the amplitude of imaging condition and wave-field extrapolation. Multiple removing technology is independent of seismic source wavelet and velocity model, which avoiding the weakness of Delft method. Aiming at the complicated formation condition of the gas reservoir in this area, with dissecting typical hydrocarbon reservoir, a series of pertinent advanced gas reservoir seismic identification technologies such as petrophysical properties analyzing and seismic modeling technology、pre-stack/post-stack joint elastic inversion, attribute extraction technology based on seismic non-stationary signal theory and formation absorption characteristic and so on are studied and developed. Integrated analysis of pre-stack/post-stack seismic data, reservoir information, rock physics and attribute information is performed. And finally, a suit of gas reservoir identification technology is built, according to the geological and geophysical characteristics of this area. With developed innovative technologies, practical application and intergrated interpretation appraisal researches are carried out in Lishui 36-1.The validity of these technologies is tested and verified. Also the hydrocarbon charging possibility and position of those three east sea gas exploration targets are clearly pointed out.
Resumo:
The practical application and development of the time-lapse seismic reservoir monitor technology has indicated which has already become one of most important development technologies in seeking the surplus oil distribution and improving the reservoir recovering. The paper, first obtained the rock physics experiment analysis data according to the Bohai Sea loose sandstone in-situ measure technical, and determined the feasibility research of the S oil-field on the time-lapse seismic reservoir monitoring combining with the time-lapse numeric simulation technology, which was used to analyze the time-lapse seismic respond raw of the reservoir parameters change and pointed out the attentive problems during the real time-lapse seismic processing and interpretation. Next, simply introduced the technical link and the effect of the time-lapse mutual constrained fidelity and match processing aiming at the local complex gathering condition, geological condition, development engineering condition. Third, introduced the time-lapse integrated interpretation and the technical system with the innovative key technology that includes the time-lapse difference explanation technology, the time-lapse seismic multi-attributes integrated interpretation technology, and the time-lapse constrained reservoir parameters inversion technology, and so on. Using the time-lapse difference direct explanation technology, directly obtained the surplus oil macroscopic distribution through the difference seismic data; Using the presenting 8 big principles of the sublayer isochronisms comparison, carried on the time-lapse integrated interpretation analysis on the fine sublayer comparison and the thin oil-layer(group) contrast and the oil layer (group); The paper putted up the research, contrast, applications of the multi-sides sensitive attribute analysis and the RBF nerve network on the nearest study algorithm, and predicted the reservoir parameters and the surplus oil distribution with them; Combining with innovative researches and the time-lapse seismic constrained reservoir parameters inversion technology realized the good combination of the seismic and the reservoir engineering. Fourth, under fully analyzing the geology condition, the reservoir condition, the exploit dynamic data, and the seismic data of the S oil-field, and analyzing the time-lapse difference factors with reservoir dynamic exploit data, calibrated the oil-gas saturation change, the pressure change, the water saturation change, and determined the rationality of the time-lapse seismic difference, and finally obtained the surplus oil distribution, the water flood characteristic understanding, reservoir degasification, and pressure drop raw, and so on, which had been used in the well pattern tightening plan proof of the S oil-field development adjustment plan. Finally, the paper summarized the knowledge and understanding of the marine time-lapse seismic integrated interpretation, also had pointed out the further need researched question.
Resumo:
Changling fault depression is the biggest fault subsidence in south of Songliao Basin. In its Lower Cretaceous Yingcheng and Shahezi formations developed thick source rocks of deep lake facies and developed poly-phase volcanic rock reservoirs as well. In recent years, significant breakthroughs have been obtained in hydrocarbon exploration of volcanic rock reservoir in the different fault depressions in Songliao basin. Lately, I have been involved in hydrocarbon exploration in the Changling rift depression, especially volcanic rock reservoirs and exploration targets research, participating in the deployment of well Yaoshen 1 which gained over 40 × 104m3 natural gas flow. As quick changes of lithology and facies in Changling area in the south of Songliao basin, and the volcanic rock interludes distribution in continental clastic rock and shale in 3D space, so the identification of volcanic rock types and distribution become a difficult problem. Thus, based on the integrated research of the wild outcrop observation, gravity, magnetic and seismic data, geophysical logging, drilling and coring, laboratory test, this paper carried out the reservoir identification, description and prediction of volcanic rocks in Changling fault depression. In this area, this paper analyzed the volcanic rocks litho-facies, the eruption period, and characteristics of cycles. At the same time, tried to know how to use logging, seismic data to separate volcanic rocks from sandstone and shale, distinguish between volcanic reservoir and non-reservoir, distinguish between intermediate-basic and acidic volcanic rocks, and how to identify traps of volcanic rocks and its gas-bearing properties, etc. Also it is summarized forming conditions and distribution of traps, and possible gas-bearing traps were optimized queuing management. Conclusions as follows: There are two faulted basements in Changling fault depression, granite basement in the southeast and upper paleozoic epimetamorphic basement in the northwest. The main volcanic reservoirs developed in Yingcheng period, which was the intermediate-basic and acidic volcanic eruptions, from the south to north by the intermediate-basic to acid conversion. The volcanic vents are gradually young from south to north. According to information of the re-processing 3D seismic data and gravity-magnetic data, the large volcanic vent or conduit was mainly beaded-distributed along the main fault. The volcanic rocks thickness in Yingcheng formation was changed by the deep faults and basement boundary line. Compared with the clastic rocks, volcanic rocks in Changling area are with high resistance and velocity (4900-5800), abnormal Gamma. All kinds of volcanic rocks are with abnormal strong amplitude reflection on the seismic stacked section except tuff. By analyzing the seismic facies characteristics of volcanic rocks, optimizing seismic attributes constrained by logging, using seismic amplitude and waveforms and other attributes divided volcanic rocks of Yingcheng formation into four seismic zones in map. Currently, most volcanic gas reservoirs are fault-anticline and fault-nose structure. But the volcanic dome lithologic gas reservoirs with large quantity and size are the main gas reservoir types to be found.