950 resultados para Salmonella poona


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported earlier that the production of O antigen lipopolysaccharide (LPS) by Salmonella enterica serovar Typhi (Salmonella typhi) increases at the onset of stationary phase and correlates with a growth-regulated expression of the rfaH gene under the control of the alternative sigma factor RpoN (Microbiology 148 (2002) 3789). In this study, we demonstrate that RpoS also modulates rfaH promoter activity as revealed by the absence of growth-dependent regulation of an rfaH-lacZ transcriptional fusion and O antigen production in a S. typhi rpoS mutant. Introduction of a constitutively expressed rpoN gene into the rpoS mutant restored increased production of O antigen during stationary phase, suggesting that constitutive production of RpoN could overcome the RpoS defect. Similar results were observed when an rpoS rpoN double mutant was transformed with the intact rpoN gene. Thus, we conclude that both RpoS and RpoN control the rfaH promoter activity and concomitantly, the production of O-specific LPS in S. typhi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bacteria employ complex transcriptional networks involving multiple genes in response to stress, which is not limited to gene and protein networks but now includes small RNAs (sRNAs). These regulatory RNA molecules are increasingly shown to be able to initiate regulatory cascades and modulate the expression of multiple genes that are involved in or required for survival under environmental challenge. Despite mounting evidence for the importance of sRNAs in stress response, their role upon antibiotic exposure remains unknown. In this study, we sought to determine firstly, whether differential expression of sRNAs occurs upon antibiotic exposure and secondly, whether these sRNAs could be attributed to microbial tolerance to antibiotics.

Results: A small scale sRNA cloning strategy of Salmonella enterica serovar Typhimurium SL1344 challenged with half the minimal inhibitory concentration of tigecycline identified four sRNAs (sYJ5, sYJ20, sYJ75 and sYJ118) which were reproducibly upregulated in the presence of either tigecycline or tetracycline. The coding sequences of the four sRNAs were found to be conserved across a number of species. Genome analysis found that sYJ5 and sYJ118 mapped between the 16S and 23S rRNA encoding genes. sYJ20 (also known as SroA) is encoded upstream of the tbpAyabKyabJ operon and is classed as a riboswitch, whilst its role in antibiotic stress-response appears independent of its riboswitch function. sYJ75 is encoded between genes that are involved in enterobactin transport and metabolism. Additionally we find that the genetic deletion of sYJ20 rendered a reduced viability phenotype in the presence of tigecycline, which was recovered when complemented. The upregulation of some of these sRNAs were also observed when S. Typhimurium was challenged by ampicillin (sYJ5, 75 and 118); or when Klebsiella pneumoniae was challenged by tigecycline (sYJ20 and 118).

Conclusions: Small RNAs are overexpressed as a result of antibiotic exposure in S. Typhimurium where the same molecules are upregulated in a related species or after exposure to different antibiotics. sYJ20, a riboswitch, appears to possess a trans-regulatory sRNA role in antibiotic tolerance. These findings imply that the sRNA mediated response is a component of the bacterial response to antibiotic challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The objectives of this study were to produce Salmonella-specific peptide ligands by phage display biopanning and evaluate their use for magnetic separation (MS).
Methods and Results: Four phage display biopanning rounds were performed and the peptides expressed by the two most Salmonella-specific (on the basis of phage binding ELISA results) phage clones, MSal020401 and MSal020417, were chemically synthesized and coupled to MyOne™ tosylactivated Dynabeads®. Peptide capture capability for whole Salmonella cells from non-enriched broth cultures was quantified by MS + plate counts and MS + Greenlight™ detection, and compared to capture capability of anti-Salmonella (antibody-coated) Dynabeads®. MS + Greenlight™ gave a more comprehensive picture of capture capability than MS + plate counts and showed that Peptide MSal020417-coated beads exhibited at least similar, if not better, capture capability to anti-Salmonella Dynabeads® (mean capture values of 36.0 ± 18.2 % and 31.2 ± 20.1 %, respectively, over Salmonella spp. concentration range 3 x 101 - 3 x 106 cfu ml-1) with minimal cross-reactivity (= 1.9 %) to three other foodborne bacteria.
Conclusions: One of the phage display-derived peptide ligands was demonstrated by MS + Greenlight™ to be a viable antibody-alternative for MS of Salmonella spp.
Significance and Impact of Study: This study demonstrates an antibody-free approach to Salmonella detection and opens substantial possibilities for more rapid tests for this bacterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS) pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3×FLAG tag in wild type (wt) and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a solid-phase PCR (SP-PCR) for rapid detection, identification, and sub-typing of various Salmonella species, the major food-borne cause of salmonellosis. The target DNA is firstly amplified with PCR primers (one primer is labeled with fluorophores) in the liquid phase. Simultaneously on the solid phase, the amplified PCR amplicons interact with the nested DNA probes immobilized on the solid substrate as an array. If the immobilized probes match the sequence of the DNA templates they are extended by the polymerase and serve as template for the second strand elongation primed by the liquid phase primer thus generating new templates for the SP-PCR. After the reaction, PCR products labeled with fluorophores remain attached to the substrate and can be visualized directly by fluorescence readout devices. Using this method, S. enteritidis, S. typhimurium and S. dublin can be detected at the same time. The method offers several advantages over conventional multiplex PCR: less competition between different primer pairs thus increasing multiplexing capability, only single wavelength optical readout needed for the multiplexing detection, and less time-consuming owing to reduction of the post-PCR gel electrophoresis. The method will be useful for development of point-of-care devices for rapid detection and identification of Salmonella spp. A solid-phase PCR for rapid detection and identification of S. enteritidis, S. typhimurium and S. dublin is developed. The method offers advantages such as better multiplexing capability, only single wavelength optical readout needed, and less time-consuming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nalidixic acid-resistant Salmonella enterica serovars Kentucky (n5) and Virchow (n6) cultured from individuals were investigated for the presence of plasmid-mediated quinolone resistance (PMQR) determinants.

PMQR markers and mutations within the quinolone resistance-determining regions of the target genes were investigated by PCR followed by DNA sequencing. Conjugation, plasmid profiling and targeted PCR were performed to demonstrate the transferability of the qnrS1 gene. Subsequently, a plasmid was identified that carried a quinolone resistance marker and this was completely sequenced.

A Salmonella Virchow isolate carried a qnrS1 gene associated with an IncN incompatibility group conjugative plasmid of 40995 bp, which was designated pVQS1. The latter conferred resistance to ampicillin and nalidixic acid and showed sequence similarity in its core region to plasmid R46, whilst the resistance-encoding region was similar to pAH0376 from Shigella flexneri and pINF5 from Salmonella Infantis and contained an IS26 remnant, a complete Tn3 structure, a truncated IS2 element and a qnrS1 marker, followed by IS26. In contrast to pINF5, IS26 was identified immediately downstream of the qnrS1 gene.

This is the first known report of a qnrS1 gene in Salmonella spp. in Switzerland. Analysis of the complete nucleotide sequence of the qnrS1-containing plasmid showed a novel arrangement of this antibiotic resistance-encoding region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate-and low-moisture foods. © 2013, American Society for Microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR)-based biosensor is a popular platform for real-time monitoring and sensitive detection for a myriad of targets. However, only a few studies have reported the use of bacteriophages as specific binders for SPR-based detection. This study aimed to demonstrate how filamentous M13 bacteriophages expressing 12-mer peptides can be employed in an SPR-based assay, using a Salmonella-specific bacteriophage as a model binder to detect the foodborne bacterium Salmonella. Several important factors (immobilization buffers and methods, and interaction buffers) for a successful bacteriophage-based SPR assay were optimized. As a result, a Salmonella-specific bacteriophage-based SPR assay was achieved, with very low cross reactivity with other non-target foodborne pathogens and detection limits of 8.0 × 107 and 1.3 × 107 CFU/mL for one-time and five-time immobilized sensors, respectively. This proof-of-concept study demonstrates the feasibility of using M13 bacteriophages expressing target-specific peptides as a binder in a rapid and label-free SPR assay for pathogen detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks. © 2013 Achtman et al

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms of antibiotic resistance were examined in nalidixic acid-resistant Salmonella enterica serovar Enteritidis field isolates displaying decreased susceptibility to ciprofloxacin and in in vitro-derived ciprofloxacin-resistant mutants (104-cip and 5408-cip). All field isolates harbored a single gyrA mutation (D87Y). Deletion of acrB and complementation with wild-type gyrA increased quinolone susceptibility. Selection for ciprofloxacin resistance was associated with the development of an additional gyrA (S83F) mutation in 104-cip, novel gyrB (E466D) and parE (V461G) mutations in 5408-cip, overexpression of acrB and decreased susceptibility to nonquinolone antibiotics in both mutants, and decreased OmpF production and altered lipopoly- saccharide in 104-cip. Complementation of mutated gyrA and gyrB with wild-type alleles restored susceptibility to quinolones in 104-cip and significantly decreased the ciprofloxacin MIC in 5408-cip. Complementation of parE had no effect on quinolone MICs. Deletion of acrB restored susceptibility to ciprofloxacin and other antibiotics tested. Both soxS and marA were overexpressed in 104-cip, and ramA was overexpressed in 5408-cip. Inactivation of each of these global regulators lowered ciprofloxacin MICs, decreased expression of acrB, and restored susceptibility to other antibiotics. Mutations were found in soxR (R20H) and in soxS (E52K) in 104-cip and in ramR (G25A) in 5408-cip. In conclusion, both efflux activity and a single gyrA mutation contribute to nalidixic acid resistance and reduced ciprofloxacin sensitivity. Ciprofloxacin resistance and decreased susceptibility to multiple antibiotics can result from different genetic events leading to development of target gene mutations, increased efflux activity resulting from differential expression of global regulators associated with mutations in their regulatory genes, and possible altered membrane permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of granulocyte-macrophage progenitor cells (in vitro colony-forming cells) and of colony-stimulating (CS) factor in serum were studied in mice infected intraperitoneally with 10(3) viable Salmonella typhimurium. Increases in the number of colony-forming cells in marrow and spleen and increases in the serum level of CS factor occurred during the infection. There was no evidence to suggest that progressive infection was associated with failure of macrophage production. Medium rich in CS factor increased the bactericidal activity of macrophages in vitro and it was suggested that CS factor could be involved in macrophage activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.