983 resultados para SYSTOLIC FUNCTION
Resumo:
Background: Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function and other CVD risk factors. Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation and endothelial activation. Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFA with MUFA attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did not impact significantly on %FMD or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a potential public health strategy for CVD risk reduction.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.
Resumo:
Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4
Resumo:
Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.
Resumo:
Background/Aims: The purpose of this study was to examine the cardiovascular effects of long-term ouabain treatment at different time points. Methods: Systolic blood pressure (SBP) was measured by tail-cuff method in male Wistar rats treated with ouabain (approx. 8.0 mu g.day(-1)) or vehicle for 5, 10 and 20 weeks. Afterwards, vascular function was assessed in mesenteric resistance arteries (MRA) using a wire myograph. ROS production and COX-1 and COX-2, TNF-alpha, and IL-6 protein expression were investigated. Results: SBP was increased by ouabain treatment up to the 6th week and remained stable until the 20th week. However, noradrenaline-induced contraction increased only in MRA in rats treated with ouabain for 20 weeks. NOS inhibition and endothelium removal increased the noradrenaline response, but to a smaller magnitude in MRA in the ouabain group. Moreover, inhibition of COX-2 or incubation with superoxide dismutase restores noradrenaline-induced contraction in the 20-week ouabain group to control levels. ROS production as well as COX-2, IL-6 and TNF-alpha protein expression increased in MRA in this group. Conclusion: Although ouabain treatment induced hypertension in all groups, a larger noradrenaline induced contraction was observed over 20 weeks of treatment. This vascular dysfunction was related to COX-2-derived prostanoids and oxidative stress, increased pro-inflammatory cytokines and reduced NO bioavailability. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to demonstrate that hypertrophied cardiac muscle is more sensitive to volume-overload than normal cardiac muscle. We assessed the mechanical function of isolated left ventricular papillary muscle from male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) Submitted to volume overload caused by aortocaval fistula (ACF) for 30 days. Muscles were perfused with Krebs-Henseleit solution at 28degreesC and Studied isometrically at a Stimulation rate of 0.2 Hz. The ACF increased the right and left ventricular weight-to-body weight ratio in WKY rats; it also promoted right ventricular hypertrophy and further increased the basal hypertrophy in the left ventricle from SHR. The arterial systolic pressure was greater in SHR than in WKY rats, and decreased with ACF in both groups. Developed tension (DT) and maximum rate of DT (+dT/dt) were greater in the SHR-control than in the WKY-control (P<0.05); the time from peak tension to 50% relaxation (RT1/2) was similar in these animals. ACE did not change any parameters ill the SHR group and increased the resting tension in the WKY group. However, the significant difference observed between myocardial contraction performance in WKY-controls and SHR-controls disappeared when the SHR-ACF and WKY-controls were compared. Furthermore, RT1/2 increased significantly ill the SHR-ACF in relation to the WKY-controls. In conclusion, the data lead LIS to infer that volume-overload for 30 days promotes more mechanical functional changes in hypertrophied muscle than in normal cardiac muscle.
Resumo:
Background: the effect of food restriction (FR) on myocardial performance has been studied in normal hearts. Few experiments analyzed the effects of undernutrition on hearts subjected to cardiac overload. The aim of this study was to determine whether chronic FR promotes more significant changes in hypertrophied hearts than in normal hearts. Methods: Myocardial performance was studied in isolated left ventricular papillary muscle from young male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) submitted to FR or to control diet. The animals subjected to FR were fed 50% of the amount of food consumed by control groups for 60 days. Isolated muscles were studied while contracting isometrically and isotonically. Results: FR decreased the body weight and the left ventricular weight in both groups. FR increased the left ventricular weight-to-body weight ratio in the WKY rats and tended to decrease this ratio in SHR (P = 0.055). The arterial systolic pressure was greater in SHR than in WKY groups and did not change with FR. In the animals with normal diet, myocardial performance was better in SHR than in WKY. FR increased time to tension to fall from peak to 50% of peak tension and time to peak tension in the WKY rats and time to peak tension in the SHR. Conclusions: FR for 60 days has a trend to attenuate the development of cardiac hypertrophy and does not promote more mechanical functional changes in the hypertrophied myocardium than in the normal cardiac muscle.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Exercise capacity and quality of life (QOL) are important outcome predictors in patients with systolic heart failure (HF), independent of left ventricular (LV) ejection fraction (LVEF). LV diastolic function has been shown to be a better predictor of aerobic exercise capacity in patients with systolic dysfunction and a New York Heart Association (NYHA) classification >II. We hypothesized that the currently used index of diastolic function E/e' is associated with exercise capacity and QOL, even in optimally treated HF patients with reduced LVEF. This prospective study included 44 consecutive patients aged 55±11 years (27 men and 17 women), with LVEF,0.50 and NYHA functional class I-III, receiving optimal pharmacological treatment and in a stable clinical condition, as shown by the absence of dyspnea exacerbation for at least 3 months. All patients had conventional transthoracic echocardiography and answered the Minnesota Living with HF Questionnaire, followed by the 6-min walk test (6MWT). In a multivariable model with 6MWT as the dependent variable, age and E/e' explained 27% of the walked distance in 6MWT (P=0.002; multivariate regression analysis). No association was found between walk distance and LVEF or mitral annulus systolic velocity. Only normalized left atrium volume, a sensitive index of diastolic function, was associated with decreased QOL. Despite the small number of patients included, this study offers evidence that diastolic function is associated with physical capacity and QOL and should be considered along with ejection fraction in patients with compensated systolic HF.
Resumo:
Background: The effects of modern therapy on functional recovery after acute myocardial infarction (AMI) are unknown.Objectives: To evaluate the predictors of systolic functional recovery after anterior AMI in patients undergoing modern therapy (reperfusion, aggressive platelet antiaggregant therapy, angiotensin-converting enzyme inhibitors and beta-blockers).Methods: A total of 94 consecutive patients with AMI with ST-segment elevation were enrolled. Echocardiograms were performed during the in-hospital phase and after 6 months. Systolic dysfunction was defined as ejection fraction value < 50%.Results: In the initial echocardiogram, 64% of patients had systolic dysfunction. Patients with ventricular dysfunction had greater infarct size, assessed by the measurement of total and isoenzyme MB creatine kinase enzymes, than patients without dysfunction. Additionally, 24.5% of patients that initially had systolic dysfunction showed recovery within 6 months after AMI. Patients who recovered ventricular function had smaller infarct sizes, but larger values of ejection fraction and E-wave deceleration time than patients without recovery. At the multivariate analysis, it can be observed that infarct size was the only independent predictor of functional recovery after 6 months of AMI when adjusted for age, gender, ejection fraction and E-wave deceleration time.Conclusion: In spite of aggressive treatment, systolic ventricular dysfunction remains a frequent event after the anterior myocardial infarction. Additionally, 25% of patients show functional recovery. Finally, infarct size was the only significant predictor of functional recovery after six months of acute myocardial infarction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Adolescence has been proposed as an ontogenic period of vulnerability to stress. Nevertheless, the impact of stressful events during adolescence in cardiovascular activity is poorly understood. Therefore, the purpose of this study was to investigate the immediate and long-lasting effects of exposure to stressful events during adolescence in cardiovascular function of rats. To this end, we compared the impact of 10-days exposure to two chronic stress protocols: the repeated restraint stress (RRS, homotypic) and chronic variable stress (CVS, heterotypic). Independent groups of animals were tested 24 h (immediate) or three weeks (long-lasting) following completion of stress period. Exposure to CVS, but not RRS, during adolescence increased basal HR values without affecting arterial pressure, which was followed by augmented power of oscillatory component at low frequency (sympathetic-related) of the pulse interval (PI). RRS enhanced variance of the PI with an increase in the power of both low and high (parasympathetic-related) frequency components. RRS also increased the baroreflex gain. Neither RRS nor CVS affected systolic arterial pressure variability. The RRS-evoked changes in PI variability were long-lasting and persisted into adulthood while all alterations evoked by the CVS were reversed in adulthood. These findings indicate a stress type-specific influence in immediate and long-term effects of stress during adolescence in cardiovascular function. While immediate changes in cardiovascular function were mainly observed following CVS, long-lasting autonomic consequences in adulthood were observed only in animals exposed to RRS during adolescence.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)