973 resultados para STRAIN-INDUCED FERROELECTRICITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present work was to undertake a detailed investigation of the softening mechanisms during hot deformation of a 21Cr-10Ni-3Mo (steel A) and a 21Cr-8Ni-3Mo (steel B) austenite/ferrite duplex stainless steels containing about 60% and 30% of austenite, respectively. The steels were subjected to hot deformation in torsion performed at 900 ºC and 1200 ºC using a strain rate of 0.7 s-1 to several strain levels. Quantitative optical and transmission electron microscopy were used in the investigation. Austenite was observed to soften via dynamic recovery (DRV) and dynamic recrystallisation (DRX) accompanied by DRV for the deformation temperatures of 900 °C and 1200 °C, respectively, for the both steels studied. DRX of austenite largely occurred through strain-induced grain boundary migration, complemented by (multiple) twinning, and developed significantly faster in steel A than in steel B, indicating that considerably larger strains partitioned into austenite in the former steel during deformation at 1200 °C. The above softening mechanism was accompanied by the formation of DRX grains from subgrains along the austenite/ferrite interface and by large-scale subgrain coalescence. At 900°C, stressassisted phase transitions between austenite and ferrite were observed, characterised by dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the microstructure with increasing strain. These processes appeared to be significantly more widespread in steel B. The softening mechanism within ferrite for the both steels studied was classified as “continuous DRX”, characterised by a gradual increase in misorientations between neighbouring subgrains with strain, for the both deformation temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple series of test was developed to highlight and compare the difference between the static strain induced transformation (SSIT) and the dynamic strain induced transformation (DSIT) mechanism in grain refinement and also to investigate the origin of the difference between the two mechanisms. The results showed that while the SSIT sets up a two-dimensional impingement among the ferrite grains, it cannot avoid their coarsening (normal growth). However, the DSIT forms a group of grains with a three-dimensional impingement which does not coarsen and maintains their fine size throughout the transformation, thereby, reduces the final average grain size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites. Since the properties and the performance of CNT reinforced elastomer composites predominantly depend on the rate of dispersion of fillers in the matrix, the physical and chemical interaction of polymer chains with the nanotubes, crosslinking chemistry of rubbers and the orientation of the tubes within the matrix, here, a thorough study of these topics is carried out. For this, various techniques of composite manufacturing such as pulverization, heterocoagulation, freeze drying, etc. are discussed by emphasizing the dispersion and alignment of CNTs in elastomers. The importance of the functionalization technique as well as the confinement effect of nanotubes in elastomer media is derived. In a word, this article is aimed exclusively at addressing the prevailing problems related to the CNT dispersion in various rubber matrices, the solutions to produce advanced high-performance elastomeric composites and various fields of applications of such composites, especially electronics. Special attention has also been given to the non-linear viscoelasticity effects of elastomers such as the Payne effect, Mullin's effect and hysteresis in regulating the composite properties. Moreover, the current challenges and opportunities for efficiently translating the extraordinary electrical properties of CNTs to rubbery matrices are also dealt with.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three different heat treatment processes have been proposed as a fundamental method to produce three kinds of TRIP-aided steels with polygonal ferritic matrix (F-TRIP), bainitic matrix (B-TRIP) and martensitic matrix (M-TRIP) in a newly designed low alloy carbon steel. By means of dilatometry study and detailed characterization, the relationships among transformation, microstructure and the resulting mechanical behavior were compared and analyzed for the three cases. The work hardening of the samples was evaluated by calculating the instantaneous n value as a function of strain. The M-TRIP sample exhibits the highest strength with the highest work hardening rate at low strains and subsequent rapid descending at high strains. In contrast, the B-TRIP sample has relatively high continuously constant work hardening behavior over strain levels greater than 0.067. The difference in work hardening behavior corresponds directly to the rate of the retained austenite-martensitic transformation during straining, which can be attributed to the carbon content, the morphology of the retained austenite and the matrix microstructure in the respective TRIP-aided samples. © 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the work is development of industry guidance concerning production of ultrafine-grained (UFG) High Strength Low Alloy (HSLA) steels using strain-induced dynamic phase transformations during advanced thermomechanical processing. In the first part of the work, the effect of processing parameters on the grain refinement was studied. Based on the obtained results, a multiscale computer model was developed in the second part of the work that was subsequently used to predict the mechanical response of studied structures. As an overall outcome, a process window was established for the production of UFG steels that can be adopted in existing hot rolling mills. © 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An equiaxed ultrafine-grained (UFG) microstructure was successfully produced in a Ti-6Al-4V alloy with an average grain size of 110-230. nm through symmetric and asymmetric warm rolling of a martensitic starting microstructure. The UFG material displayed a combination of ultrahigh strength and ductility at room temperature. Compared with the conventional symmetric rolling, the asymmetric rolling process led to a more pronounced effect of microstructure refinement and a higher tensile ductility. The optimum mechanical response was obtained though the asymmetric rolling at 70% reduction, offering an ultimate tensile strength of 1365. MPa and a total elongation of ~23%. Apart from the magnitude of grain refinement, the inclination of basal texture component from the normal towards the rolling direction during asymmetric rolling and possible strain induced β to martensite transformation may concurrently contribute to a remarkable tensile strength-ductility balance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement changed with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni-30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperature that then act as sites for static transformation. © 2008 World Scientific Publishing Company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the humoral antibody response, the genome viral excretion and the contact transmission of pathogenic chicken origin Newcastle disease virus (NDV) from experimentally infected pigeons (Columba livia) to in-contact pigeon. The antibody response to infection was assessed by the hemagglutination inhibition (HI) test and the genome viral excretion was detected by RT-PCR. Viral strain induced high antibody levels, both in inoculated and in sentinel birds. The pathogenic viral strain for chickens was unable to produce clinical signs of the disease in experimentally infected pigeons, although it induced the Immoral antibody response and produced NDV genome shedding. NDV genome was detected intermittently throughout the experimental period, from 5 days post-infection (dpi) to 24 dpi. Therefore, viral genome shedding occurred for 20 days. The viral genome was detected in all birds, between I I and 13 dpi. Furthermore, the high infectivity of the virus was confirmed, as all non-inoculated sentinel pigeons showed antibody levels as high as those of inoculated birds. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The infection of mice with the wild-type (WT) strain of Y. pseudotuberculosis did not induce polyclonal activation of B lymphocytes. Suppression in the production of certain isotypes of Ig was observed, provoked mainly by YopH, YopJ and YpkA. The WT strain induced a progressive increase in the serum-specific IgG, which peaked after 4 weeks after infection, IgM being produced only after 1 week. Autoantibodies against phosphorylcholine, myelin, thyroglobulin and cardiolipin could be detected in the serum of mice infected with the WT strain. The infection of mice provoked suppression in the production of immunoglobulins by splenic B cells and that YopH, YopJ and YpkA must be involved here.