978 resultados para SPONTANEOUS EMISSION
Resumo:
A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement. © 2012 American Institute of Physics.
Resumo:
In this thesis we perform a detailed analysis of the state of polarization (SOP) of light scattering process using a concatenation of ber-coil based polarization controllers (PCs). We propose a polarization-mode dispersion (PMD) emulator, built through the concatenation of bercoil based PCs and polarization-maintaining bers (PMFs), capable of generate accurate rst- and second-order PMD statistics. We analyze the co-propagation of two optical waves inside a highbirefringence ber. The evolution along the ber of the relative SOP between the two signals is modeled by the de nition of the degree of co-polarization parameter. We validate the model for the degree of co-polarization experimentally, exploring the polarization dependence of the four-wave mixing e ect into a ber with high birefringence. We also study the interaction between signal and noise mediated by Kerr e ect in optical bers. A model accurately describing ampli ed spontaneous emission noise in systems with distributed Raman gain is derived. We show that the noise statistics depends on the propagation distance and on the signal power, and that for distances longer than 120 km and signal powers higher than 6 mW it deviates signi catively from the Gaussian distribution. We explore the all-optical polarization control process based on the stimulated Raman scattering e ect. Mapping parameters like the degree of polarization (DOP), we show that the preferred ampli cation of one particular polarization component of the signal allows a polarization pulling over a wavelength range of 60 nm. The e ciency of the process is higher close to the maximum Raman gain wavelength, where the DOP is roughly constant for a wavelength range of 15 nm. Finally, we study the polarization control in quantum key distribution (QKD) systems with polarization encoding. A model for the quantum bit error rate estimation in QKD systems with time-division multiplexing and wavelength-division multiplexing based polarization control schemes is derived.
Resumo:
In this work physical and behavioral models for a bulk Reflective Semiconductor Optical Amplifier (RSOA) modulator in Radio over Fiber (RoF) links are proposed. The transmission performance of the RSOA modulator is predicted under broadband signal drive. At first, the simplified physical model for the RSOA modulator in RoF links is proposed, which is based on the rate equation and traveling-wave equations with several assumptions. The model is implemented with the Symbolically Defined Devices (SDD) in Advanced Design System (ADS) and validated with experimental results. Detailed analysis regarding optical gain, harmonic and intermodulation distortions, and transmission performance is performed. The distribution of the carrier and Amplified Spontaneous Emission (ASE) is also demonstrated. Behavioral modeling of the RSOA modulator is to enable us to investigate the nonlinear distortion of the RSOA modulator from another perspective in system level. The Amplitude-to-Amplitude Conversion (AM-AM) and Amplitude-to-Phase Conversion (AM-PM) distortions of the RSOA modulator are demonstrated based on an Artificial Neural Network (ANN) and a generalized polynomial model. Another behavioral model based on Xparameters was obtained from the physical model. Compensation of the nonlinearity of the RSOA modulator is carried out based on a memory polynomial model. The nonlinear distortion of the RSOA modulator is reduced successfully. The improvement of the 3rd order intermodulation distortion is up to 17 dB. The Error Vector Magnitude (EVM) is improved from 6.1% to 2.0%. In the last part of this work, the performance of Fibre Optic Networks for Distributed and Extendible Heterogeneous Radio Architectures and Service Provisioning (FUTON) systems, which is the four-channel virtual Multiple Input Multiple Output (MIMO), is predicted by using the developed physical model. Based on Subcarrier Multiplexing (SCM) techniques, four-channel signals with 100 MHz bandwidth per channel are generated and used to drive the RSOA modulator. The transmission performance of the RSOA modulator under the broadband multi channels is depicted with the figure of merit, EVM under di erent adrature Amplitude Modulation (QAM) level of 64 and 254 for various number of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers of 64, 512, 1024 and 2048.
Resumo:
The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.
Resumo:
A solid-state laser based on a dye-doped deoxyribonucleic acid (DNA) matrix is described. A thin solid film of DNA has been fabricated by treating with polyvinyl alcohol (PVA) and used as a host for the laser dye Rhodamine 6G. The edge emitted spectrum clearly indicated the existence of laser modes and amplified spontaneous emission. Lasing was obtained by pumping with a frequency-doubled Nd:YAG laser at 532 nm. For a pump energy of 10 mJ/pulse, an intense line with FWHM ≈0.2 nm was observed at 566 nm due to selective mode excitation.
Resumo:
Observing the wide possibilities of fluorescent dyes, an exhaustive investigation is done in laser dyes mainly focusing on Coumarin 540 which has a very strong emission in the green region. The photophysics of the dye is studied in detail in a good number of solvent environments. The results of the amplified spontaneous emission and lasing behaviour in both dye solution and different polymer solid state matrices and the ptotostability of the these matrices are investigated using the photoacoustic technique and the same are also included in this thesis. The energy transfer behaviour in dye mixtures which could be utilized for laser studies and bio-analysis are also presented. The nonlinear characterization of Coumarin540 forms the last part of the experimental investigations presented in the thesis.
Resumo:
This thesis Entitled Photonic applications of biomaterials with special reference to biopolymers and microbes. A detailed investigation will be presented in the present thesis related to direct applications of biopolymers into some selected area of photonics and how the growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. This chapter is an overview of the spectrum of biomaterials and their application to Photonics. The chapter discusses a wide range of biomaterials based photonics applications like efficient harvesting of solar energy, lowthreshold lasing, high-density data storage, optical switching, filtering and template for nano s tructures. The most extensively investigated photonics application in biology is Laser induced fluorescence technique. The importance of fluorescence studies in different biological and related fields are also mentioned in this chapter.
Resumo:
In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.
Resumo:
In this contribution, we present a systematic investigation on a series of spiroquaterphenyl compounds optimised for solid state lasing in the near ultraviolet (UV). Amplified spontaneous emission (ASE) thresholds in the order of 1 μJ/cm2 are obtained in neat (undiluted) films and blends, with emission peaks at 390 1 nm for unsubstituted and meta-substituted quaterphenyls and 400 4 nm for para-ether substituted quaterphenyls. Mixing with a transparent matrix retains a low threshold, shifts the emission to lower wavelengths and allows a better access to modes having their intensity maximum deeper in the film. Chemical design and blending allow an independent tuning of optical and processing properties such as the glass transition.
Resumo:
First-principles calculations of absolute line intensities and rovibrational energies of ozone (O-16(3)) are reported using potential energy and electric dipole moment functions calculated by the internally contracted MRCI approach. The rovibrational energies and eigenfunctions (up to about 8500 cm(-1) and J = 64) were obtained variationally with an exact Hamiltonian in internal valence coordinates. More than 4.8 x 10(6) electric dipole transition matrix elements were calculated for the absolute rovibrational line intensities. They are compared with the values of the HITRAN database. The purely rotational absolute line intensities in the (000) state and the rovibrational intensities for the (001)-(000) band agree to within about 0.3 to 1% for the (0 10)-(000) band to within about 3 to 4%. Excellent agreement with experiment is also achieved for low-lying overtone and combination bands. Inconsistencies are found for the (100)-(000) band overlapping with the antisymmetric stretching fundamental and also for the (002)-(000) antisymmetric stretching overtone. The generated dipole moment function can be used for predicting the absorption intensities in any of the heavier isotopomers, hot bands or the rates of spontaneous emission.
Resumo:
Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced. Cooperative scattering of light by extended atomic clouds can become important in the presence of quasi-resonant light and could be addressed in many cold atoms experiments.
Resumo:
Accurate potential energy curves, dissociation energies and spectroscopic constants for several low-lying doublet and quartet electronic states of CaAl were investigated using the CASSCF/MRCI methodology, and the cc-pVQZ basis set. Our results represent an improvement over a previous theoretical description, and also characterizes new higher excited states not previously investigated, thus confirming the assignment of four excited states investigated experimentally. With the theoretical transition moment functions, transition probabilities and radiative lifetimes were estimated via Einstein spontaneous emission coefficients. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
This work reports the energy transfer mechanism process of [Eu(TTA)(2)(NO(3))(TPPO)(2)] (bis-TTA complex) and [Eu(TTA)(3)(TPPO)(2)] (tris-TTA complex) based on experimental and theoretical spectroscopic properties, where TTA = 2-thienoyltrifluoroacetone and TPPO = triphenylphosphine oxide. These complexes were synthesized and characterized by elemental analyses, infrared spectroscopy and thermogavimetric analysis. The theoretical complexes geometry data by using Sparkle model for the calculation of lanthanide complexes (SMLC) is in agreement with the crystalline structure determined by single-crystal X-ray diffraction analysis. The emission spectra for [Gd(TTA)(3)(TPPO)(2)] and [Gd(TTA)(2) (NO(3))(TPPO)(2)] complexes are associated to T -> S(0) transitions centered on coordinated TTA ligands. Experimental luminescent properties of the bis-TTA complex have been quantified through emission intensity parameters Omega(lambda)(lambda = 2 and 4), spontaneous emission rates (A(rad)), luminescence lifetime (tau), emission quantum efficiency (eta) and emission quantum yield (q), which were compared with those for tris-TTA complex. The experimental data showed that the intensity parameter value for bis-TTA complex is twice smaller than the one for tris-TTA complex, indicating the less polarizable chemical environment in the system containing nitrate ion. A good agreement between the theoretical and experimental quantum yields for both Eu(Ill) complexes was obtained. The triboluminescence (TL) of the [Eu(TTA)(2)(NO(3))(TPPO)(2)] complexes are discussed in terms of ligand-to-metal energy transfer. (c) 2007 Elsevier B.V. All fights reserved.