762 resultados para SPACER FABRICS
Resumo:
Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.
Resumo:
The internal transcribed spacers (ITS) of nuclear ribosomal DNA of 33 species of genus Paeonia (Paeoniaceae) were sequenced. In section Paeonia, different patterns of nucleotide additivity were detected in 14 diploid and tetraploid species at sites that are variable in the other 12 species of the section, suggesting that reticulate evolution has occurred. Phylogenetic relationships of species that do not show additivity, and thus ostensibly were not derived through hybridization, were reconstructed by parsimony analysis. The taxa presumably derived through reticulate evolution were then added to the phylogenetic tree according to additivity from putative parents. The study provides an example of successfully using ITS sequences to reconstruct reticulate evolution in plants and further demonstrates that the sequence data could be highly informative and accurate for detecting hybridization. Maintenance of parental sequences in the species of hybrid origin is likely due to slowing of concerted evolution caused by the long generation time of peonies. The partial and uneven homogenization of parental sequences displayed in nine species of putative hybrid origin may have resulted from gradients of gene conversion. The documented hybridizations may have occurred since the Pleistocene glaciations. The species of hybrid origin and their putative parents are now distantly allopatric. Reconstruction of reticulate evolution with sequence data, therefore, provides gene records for distributional histories of some of the parental species.
Resumo:
by William H. Holmes.
Resumo:
Samuel C. Brown, Thomas N. Dale, Robert H. Thurston, commission.
Resumo:
by William H. Holmes.