919 resultados para SMALL-ANGLE SCATTERING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) with contrast matching techniques (Melnichenko and others, 2012) were used to investigate size distribution and gas accessibility in pores in an approximately 10.6 cm long Mississippian Barnett Shale butt core from the Fort Worth Basin, Texas, USA. SANS and USANS measurements record scattering from all pores, both open and closed, in the size range 10nm - ~10 μ. The techniques can also be used to determine the material that contains pores and the number of pores as a function of size. By injecting deuterated methane gas (CD4) at contrast matching pressure it is possible to distinguish which pores are accessible, or open, to fluids and which ones are not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle multiple intrabeam scattering (IBS) is an important effect for heavy-ion storage rings with electron cooling, because the cooling time is determined by the equilibrium between cooling and IBS process. All usually used numerical algorithms of IBS growth rate calculations are based on the model of the collisions proposed by A.Piwinski, but this result is a multidimensional integral. In this paper, the IBS growth rates are simulated for HIRFL-CSR using symmetric elliptic integral method, and compared with several available IBS code results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles, viz. angulax dispersion plot, shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 due to its exotic structure, while no turning point was observed for O-17. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering angular dispersion of weakly bound nuclei with halo or skin structure as compared with that of the stable nuclei. Therefore the fact that the turning point of the elastic scattering angular dispersion plot appears at small angle for weakly bound nuclei can be used as a new probe to investigate the halo and skin phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differential cross sections of F-17 and O-17 elastic scattering products on Pb-208 have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots of ln(d sigma/d theta) versus theta 2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for F-17 in the range of small scattering angles 6 degrees-20 degrees due to its exotic structure, but for O-17, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic-Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3mm - 20mm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time-of-flight technique is used on a small-angle neutron scattering instrument to separate the energies of the scattered neutrons, in order to determine the origin of the temperature-dependent scattering observed from silicon at Q > similar to 0.1 angstrom(-1). A quantitative analysis of the results in comparison with the phonon dispersion curves, determined by Dolling using a triple-axis neutron spectrometer, shows that the temperature-dependent scattering can be understood in terms of Umklapp processes whereby neutrons gain energy from phonons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization of well-defined poly(L-lactide)-b-poly(epsilon-caprolactone) diblock copolymers, PLLA-b-PCL, was investigated by time-resolved X-ray techniques, polarized optical microscopy (POM), and differential scanning calorimetry (DSC). Two compositions were studied that contained 44 and 60 wt % poly(L-lactide), PLLA (they are referred to as (L44C5614)-C-11 and (L60C409)-C-12, respectively, with the molecular weight of each block in kg/mol as superscript). The copolymers were found to be initially miscible in the melt according to small-angle X-ray scattering measurements (SAXS). Their thermal behavior was also indicative of samples whose crystallization proceeds from a mixed melt. Sequential isothermal crystallization from the melt at 100 degreesC (for 30 min) and then at 30 degreesC (for 15 min) was measured. At 100 degreesC only the PLLA block is capable of crystallization, and its crystallization kinetics was followed by both WAXS and DSC; comparable results were obtained that indicated an instantaneous nucleation with three-dimensional superstructures (Avrami index of approximately 3). The spherulitic nature of the superstructure was confirmed by POM. When the temperature was decreased to 30 degreesC, the PCL block was able to crystallize within the PLLA negative spherulites (with an Avrami index of 2, as opposed to 3 in homo-PCL), and its crystallization rate was much slower than an equivalent homo-PCL. Time-resolved SAXS experiments in (L60C409)-C-12 revealed an initial melt mixed morphology at 165 degreesC that upon cooling transformed into a transient microphase-separated lamellar structure prior to crystallization at 100 degreesC.