964 resultados para SKELETAL DEVELOPMENT
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor (FGFR) family. To investigate its expression during mammalian embryonic development, we have used the mouse system. Expression of Fgfrl1 is very low in mouse embryos of day 6 but steadily increases until birth. As demonstrated by in situ hybridization of 16-day-old embryos, the Fgfrl1 mRNA occurs in cartilaginous structures such as the primordia of bones and the permanent cartilage of the trachea, the ribs and the nose. In addition, some muscle types, including the muscles of the tongue and the diaphragm, express Fgfrl1 at relatively high level. In contrast, the heart and the skeletal muscles of the limbs, as well as many other organs (brain, lung, liver, kidney, gut) express Fgfrl1 only at basal level. It is conceivable that Fgfrl1 interacts with other Fgfrs, which are expressed in cartilage and muscle, to modulate FGF signaling.
Resumo:
AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.
Resumo:
The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.
Resumo:
Fractures of the keel bone, a bone extending ventrally from the sternum, are a serious health and welfare problem in free range laying hens. Recent findings suggest that a major cause of keel damage within extensive systems is collisions with internal housing structures, though investigative efforts have been hindered by difficulties in examining mechanisms and likely influencing factors at the moment of fracture. The objectives of this study were to develop an ex vivo impact protocol to model bone fracture in hens caused by collision, to assess impact and bird-related factors influencing fracture occurrence and severity, and to identify correlations of mechanical and structural properties between different skeletal sites. We induced keel bone fractures in euthanized hens using a drop-weight impact tester able to generate a range of impact energies, producing fractures that replicate those commonly found in commercial settings. The results demonstrated that impact energies of a similar order to those expected in normal housing were able to produce fractures, and that greater collision energies resulted in an increased likelihood of fractures and of greater severity. Relationships were also seen with keel's lateral surface bone mineral density, and the peak reactive force (strength) at the base of the manubrial spine. Correlations were also identified between the keel and long bones with respect to both strength and bone mineral density. This is the first study able to relate impact and bone characteristics with keel bone fracture at the moment of collision. Greater understanding of these relationships will provide means to reduce levels of breakage and severity in commercial systems.
Resumo:
The function of myogenic regulatory factors (MRFs) during adult life is not well understood. The requirement of one of these MRFs, myogenin (Myog), during embryonic muscle development suggests an equally important role in adult muscle. In this study, we have determined the function of myogenin during adult life using a conditional allele of Myog. In contrast to embryonic development, myogenin is not required for adult viability, and Myog-deleted mice exhibited no remarkable phenotypic changes during sedentary life. Remarkably, sedentary Myog-deleted mice demonstrated enhanced exercise endurance during involuntary treadmill running. Altered blood glucose and lactate levels in sedentary Myog-deleted mice after exhaustion suggest an enhanced glycolytic metabolism and an ability to excessively deplete muscle and liver glycogen stores. Traditional changes associated with enhanced exercise endurance, such as fiber type switching, and increased oxidative potential, were not detected in sedentary Myog-deleted mice. After long-term voluntary exercise, trained Myog-deleted mice demonstrated an enhanced adaptive response to exercise. Trained Myog-deleted mice exhibited superior exercise endurance associated with an increased proportion of slow-twitch fibers and increased oxidative capacity. In a parallel experiment, dystrophin-deficient young adult mice showed attenuated muscle fatigue following the deletion of Myog. These results demonstrate a novel and unexpected role for myogenin in modulating skeletal muscle metabolism.
Resumo:
The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.
Resumo:
The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.
Resumo:
Osseous metastases account for most of the morbidity and mortality associated with prostate cancer, for which there are currently no effective therapies. In the skeletal metastatic environment, neoplastic prostatic epithelial cells interact in a bidirectional stimulatory manner with osteoblastic stromal cells. Similarly, the presence of osteoblastic cells is essential for the survival and maintenance of intraosseous prostate cancer cells. In this thesis, I have developed novel gene therapy strategies for the treatment of androgen-independent human prostate cancers in experimental animal models. First, Ad-CMV-p53, a recombinant adenovirus (Ad) containing p53 tumor suppressor gene driven by the universal cytomegalovirus promoter, was effective in inhibiting prostate cancer cell growth, and direct intratumoral injections of Ad-CMV-p53 resulted in tumor regression. Second, because prostate cancer cells as well as osteoblastic cells produce osteocalcin (OC), OC promoter mediated tissue/tumor specific toxic gene therapy is developed to interrupt stromal-epithelial communications by targeting both cell types. Ad-OC-TK, a recombinant Ad containing the herpes simplex virus thymidine kinase (TK) gene driven by the OC promoter, was generated to inhibit the growth of osteoblastic osteosarcoma with prodrug acyclovir (ACV). Ad-OC-TK/ACV also inhibited the growth of prostate cancer cells and suppressed the growth of subcutaneous and intraosseous prostate tumor. In order to combine treatment modalities to maximize tumor cell-kill with minimized host toxicities, Ad-OC-TK/ACV was applied in combination with low dose methotrexate to eradicate osteoblastic osteosarcoma. In targeting of micrometastatic disease, intravenous Ad-OC-TK/ACV treatment resulted in significant tumor nodule reduction and prolonged the survival of animals harboring osteosarcoma lung metastases without significant host toxicity. Ad-OC-TK is a rational choice for the treatment of prostate cancer skeletal metastasis because OC is uniformly detected in both primary and metastatic human prostate cancer specimens by immunohistochemistry. Ad-OC-TK/ACV inhibits the growth not only of prostate cancer cells but also of their supporting bone stromal cells. Targeting both prostate cancer epithelium and its supporting stroma may be most efficacious for the treatment of prostate cancer osseous metastases. ^
Resumo:
Beta1-integrins (beta1) represent cell surface receptors which mediate cell-matrix and cell-cell interactions. Fässler and Meyer described chimeric mice containing transgenic cells that express the LacZ gene instead of the beta1 gene. They observed beta1-negative cells in all germ layers at embryonic day E 8.5. Later in development, using a glucose phosphate isomerase assay of homogenized tissue samples, high levels of transgenic cells were found in skeletal muscle and gut, low levels in lung, heart, and kidney and none in the liver and spleen (Fässler and Meyer 1995). In order to study which cell types require beta1 during development of the primitive gut including its derivatives, chimeric fetuses containing 15 to 25% transgenic cells were obtained at days E 14.5 and E 15.5. They were LacZ (beta-galactosidase) stained "en bloc" and cross-sectioned head to tail. In esophagus, trachea, lung, stomach, hindgut, and the future urinary bladder, we observed various mesoderm-derived beta1-negative cells (e.g. fibroblasts, chondrocytes, endothelial cells, and smooth muscle cells) but no beta1-negative epithelial cells. Since the epithelia of lung, esophagus, trachea, stomach, hindgut, and urinary bladder are derived from the endodermal gut tube, we hypothesize that beta1 is essential for the development and/or survival of the epithelia of the fore- and hindgut and its derivatives.
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.
Resumo:
Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^
Resumo:
Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^