973 resultados para SINGLE-PARTICLE
Resumo:
There is concern in the Cross-Channel region of Nord-Pas-de-Calais (France) and Kent (Great Britain), regarding the extent of atmospheric pollution detected in the area from emitted gaseous (VOC, NOx, S02)and particulate substances. In particular, the air quality of the Cross-Channel or "Trans-Manche" region is highly affected by the heavily industrial area of Dunkerque, in addition to transportation sources linked to cross-channel traffic in Kent and Calais, posing threats to the environment and human health. In the framework of the cross-border EU Interreg IIIA activity, the joint Anglo-French project, ATTMA, has been commissioned to study Aerosol Transport in the Trans-Manche Atmosphere. Using ground monitoring data from UK and French networks and with the assistance of satellite images the project aims to determine dispersion patterns. and identify sources responsible for the pollutants. The findings of this study will increase awareness and have a bearing on future air quality policy in the region. Public interest is evident by the presence of local authorities on both sides of the English Channel as collaborators. The research is based on pollution transport simulations using (a) Lagrangian Particle Dispersion (LPD) models, (b) an Eulerian Receptor Based model. This paper is concerned with part (a), the LPD Models. Lagrangian Particle Dispersion (LPD) models are often used to numerically simulate the dispersion of a passive tracer in the planetary boundary layer by calculating the Lagrangian trajectories of thousands of notional particles. In this contribution, the project investigated the use of two widely used particle dispersion models: the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the model FLEXPART. In both models forward tracking and inverse (or·. receptor-based) modes are possible. Certain distinct pollution episodes have been selected from the monitor database EXPER/PF and from UK monitoring stations, and their likely trajectory predicted using prevailing weather data. Global meteorological datasets were downloaded from the ECMWF MARS archive. Part of the difficulty in identifying pollution sources arises from the fact that much of the pollution outside the monitoring area. For example heightened particulate concentrations are to originate from sand storms in the Sahara, or volcanic activity in Iceland or the Caribbean work identifies such long range influences. The output of the simulations shows that there are notable differences between the formulations of and Hysplit, although both models used the same meteorological data and source input, suggesting that the identification of the primary emissions during air pollution episodes may be rather uncertain.
Resumo:
We propose a scheme for the determination of the coupling parameters in a chain of interacting spins. This requires only time-resolved measurements over a single particle, simple data postprocessing and no state initialization or prior knowledge of the state of the chain. The protocol fits well into the context of quantum-dynamics characterization and is efficient even when the spin chain is affected by general dissipative and dephasing channels. We illustrate the performance of the scheme by analyzing explicit examples and discuss possible extensions.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping potential with a tunable zero-ranged barrier at the trap center. The full characterization of the ground state is done by calculating the reduced single-particle density, the momentum distribution, and the two-particle entanglement. We derive several analytical expressions in the limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to finite interparticle interactions by numerical solution. As pair interactions in double wells form a fundamental building block for many-body systems in periodic potentials, our results have implications for a wide range of problems.
Resumo:
We compare the efficiencies of two optical cooling schemes, where a single particle is either inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling forces using the general solution of a transfer matrix method for a moving scatterer inside a general one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of comparable magnitude.
Resumo:
We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
Resumo:
Bosons interacting repulsively on a lattice with a flat lowest band energy dispersion may, at sufficiently small filling factors, enter into a Wigner-crystal-like phase. This phase is a consequence of the dispersionless nature of the system, which in turn implies the occurrence of single-particle localized eigenstates. We investigate one of these systems-the sawtooth lattice-filled with strongly repulsive bosons at filling factors infinitesimally above the critical point where the crystal phase is no longer the ground state. We find, in the hard-core limit, that the crystal retains its structure in all but one of its cells, where it is broken. The broken cell corresponds to an exotic kind of repulsively bound state, which becomes delocalized. We investigate the excitation spectrum of the system analytically and find that the bound state behaves as a single particle hopping on an effective lattice with reduced periodicity, and is therefore gapless. Thus, the addition of a single particle to a flat-band system at critical filling is found to be enough to make kinetic behavior manifest.
Electron-impact ionization of diatomic molecules using a configuration-average distorted-wave method
Resumo:
Electron-impact ionization cross sections for diatomic molecules are calculated in a configuration-average distorted-wave method. Core bound orbitals for the molecular ion are calculated using a single-configuration self-consistent-field method based on a linear combination of Slater-type orbitals. The core bound orbitals are then transformed onto a two-dimensional (r,θ) numerical lattice from which a Hartree potential with local exchange is constructed. The single-particle Schrödinger equation is then solved for the valence bound orbital and continuum distorted-wave orbitals with S-matrix boundary conditions. Total cross section results for H2 and N2 are compared with those from semiempirical calculations and experimental measurements.
Resumo:
Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of themost important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (N100 s m−3) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis showthat, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW–W; and (2) NW–NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.
Resumo:
Ecological studies that examine species-environment relationships are often limited to several meteorological parameters, i.e. mean air temperature, relative humidity, precipitation, vapour pressure deficit and solar radiation. The impact of local wind, its speed and direction are less commonly investigated in aerobiological surveys mainly due to difficulties related to the employment of specific analytical tools and interpretation of their outputs. Identification of inoculum sources of economically important plant pathogens, as well as highly allergenic bioaerosols like Cladosporium species, has not been yet explored with remote sensing data and atmospheric models such as Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). We, therefore, performed an analysis of 24 h intra-diurnal cycle of Cladosporium spp. spores from an urban site in connection with both the local wind direction and overall air mass direction computed by HYSPLIT. The observational method was a volumetric air sampler of the Hirst design with 1 h time resolution and corresponding optical detection of fungal spores with light microscopy. The atmospheric modelling was done using the on-line data set from GDAS with 1° resolution and circular statistical methods. Our results showed stronger, statistically significant correlation (p ≤ 0.05) between high Cladosporium spp. spore concentration and air mass direction compared to the local wind direction. This suggested that a large fraction of the investigated fungal spores had a regional origin and must be located more than a few kilometers away from the sampling point.
Resumo:
The Lennard-Jones Devonshire 1 (LJD) single particle theory for liquids is extended and applied to the anharmonic solid in a high temperature limit. The exact free energy for the crystal is expressed as a convergent series of terms involving larger and larger sets of contiguous particles called cell-clusters. The motions of all the particles within cell-clusters are correlated to each other and lead to non-trivial integrals of orders 3, 6, 9, ... 3N. For the first time the six dimensional integral has been calculated to high accuracy using a Lennard-Jones (6-12) pair interaction between nearest neighbours only for the f.c.c. lattice. The thermodynamic properties predicted by this model agree well with experimental results for solid Xenon.
Resumo:
L’utilisation accrue des nanomatériaux manufacturés (NM) fait en sorte que les différents acteurs de réglementation se questionnent de plus en plus par rapport à leur destin et leurs impacts sur les écosystèmes et la santé humaine suite à leur rejet dans l’environnement. Le développement de techniques analytiques permettant de détecter et de caractériser les NM en matrice environnementale est impératif étant donné la nécessité d’évaluer le risque relié à ces polluants émergents. Une des approches de plus en plus favorisée est d’utiliser une technique chromatographique et un ou plusieurs détecteurs sensibles dans les buts de réduire les effets de matrice, d’identifier des nanoparticules (NP) selon leurs temps de rétention et de les quantifier à des concentrations représentatives de la réalité environnementale. Une technique analytique utilisant la chromatographie hydrodynamique (HDC) et des détecteurs en ligne ou hors ligne (détecteurs de diffusion statique ou dynamique de la lumière, spectromètre de masse par torche à plasma en mode particule unique (SP-ICPMS), l’ultracentrifugation analytique) a donc été développée. Le couplage de la colonne HDC avec ces détecteurs a permis de caractériser des NP standards et l’optimisation des conditions de séparation de ces nanoparticules de polystyrène, d’or et d’argent a permis de confirmer que les NP y sont bel et bien séparées seulement selon leur taille, tel que la théorie le prédit. De plus, l’utilisation de la colonne HDC couplée au SP-ICPMS a permis de séparer un mélange de nanoparticules d’argent (nAg) et de les détecter à des concentrations représentatives de celles rencontrées dans l’environnement, soit de l’ordre du μg L-1 au ng L-1. Par exemple, dans un échantillon d’eau usée (effluent), un mélange de nAg de 80 et de 40 nm a été séparé et les nAg ont été détectées à l’aide du SP-ICPMS connecté à la colonne HDC (temps de rétention de 25.2 et 25.6 minutes et diamètres déterminés de 71.4 nm et 52.0 nm). Finalement, pour plusieurs échantillons environnementaux auxquels aucun ajout de nanoparticules n’a été fait, les analyses HDC-SP-ICPMS effectuées ont permis de déterminer qu’ils ne contenaient initialement pas de nAg.
Resumo:
The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.