997 resultados para SIMPLE SEQUENCES
Resumo:
In this paper we establish a foundation for understanding the instrumentation needs of complex dynamic systems if ecological interface design (EID)-based interfaces are to be robust in the face of instrumentation failures. EID-based interfaces often include configural displays which reveal the higher-order properties of complex systems. However, concerns have been expressed that such displays might be misleading when instrumentation is unreliable or unavailable. Rasmussen's abstraction hierarchy (AH) formalism can be extended to include representations of sensors near the functions or properties about which they provide information, resulting in what we call a sensor-annotated abstraction hierarchy. Sensor-annotated AHs help the analyst determine the impact of different instrumentation engineering policies on higher-order system information by showing how the data provided from individual sensors propagates within and across levels of abstraction in the AH. The use of sensor-annotated AHs with a configural display is illustrated with a simple water reservoir example. We argue that if EID is to be effectively employed in the design of interfaces for complex systems, then the information needs of the human operator need to be considered at the earliest stages of system development while instrumentation requirements are being formulated. In this way, Rasmussen's AH promotes a formative approach to instrumentation engineering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Darwin's paradigm holds that the diversity of present-day organisms has arisen via a process of genetic descent with modification, as on a bifurcating tree. Evidence is accumulating that genes are sometimes transferred not along lineages but rather across lineages. To the extent that this is so, Darwin's paradigm can apply only imperfectly to genomes, potentially complicating or perhaps undermining attempts to reconstruct historical relationships among genomes (i.e., a genome tree). Whether most genes in a genome have arisen via treelike (vertical) descent or by lateral transfer across lineages can be tested if enough complete genome sequences are used. We define a phylogenetically discordant sequence (PDS) as an open reading frame (ORF) that exhibits patterns of similarity relationships statistically distinguishable from those of most other ORFs in the same genome. PDSs represent between 6.0 and 16.8% (mean, 10.8%) of the analyzable ORFs in the genomes of 28 bacteria, eight archaea, and one eukaryote (Saccharomyces cerevisiae). In this study we developed and assessed a distance-based approach, based on mean pairwise sequence similarity, for generating genome trees. Exclusion of PDSs improved bootstrap support for basal nodes but altered few topological features, indicating that there is little systematic bias among PDSs. Many but not all features of the genome tree from which PDSs were excluded are consistent with the 16S rRNA tree.
Resumo:
This study was designed to examine whether discrete working memory deficits underlie positive, negative and disorganised symptoms of schizophrenia. Symptom dimension ratings were assigned to 52 outpatients with schizophrenia (ICD-10 criteria), using items drawn from the Positive and Negative Syndrome Scale (PANSS). Linear regression and correlational analyses were conducted to examine whether symptom dimension scores were related to performance on several tests of working memory function. Severity of negative symptoms correlated with reduced production of words during a verbal fluency task, impaired ability to hold letter and number sequences on-line and manipulate them Simultaneously, reduced performance during a dual task, and compromised visuospatial working memory under distraction-free conditions. Severity of disorganisation symptoms correlated with impaired visuospatial working memory under conditions of distraction, failure of inhibition during a verbal fluency task, perseverative responding on a test of set-shifting ability, and impaired ability to judge the veracity of simple declarative statements. Severity of positive symptoms was uncorrelated with performance on any of the measures examined. The present study provides evidence that the positive, negative and disorganised symptom dimensions of the PANSS constitute independent clusters, associated with unique patterns of working memory impairment. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta)
Resumo:
Microsatellite-containing sequences were isolated from enriched genomic libraries of taro (Colocasia esculenta (L.) Schott). The sequencing of 269 clones yielded 77 inserts containing repeat motifs. The majority of these (81.7%) were dinucleotide or trinucleotide repeats. The GT/CA repeat motif was the most common, accounting for 42% of all repeat types. From a total of 43 primer pairs designed, 41 produced markers within the expected size range. Sixteen (39%) were polymorphic when screened against a restricted set of taro genotypes from Southeast Asia and Oceania, with an average of 3.2 alleles detected on each locus. These markers represent a useful resource for taro germplasm management, genome mapping, and marker-assisted selection.
Resumo:
The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.
Resumo:
Idiosyncratic markers are features of genes and genomes that are so unusual that it is unlikely that they evolved more than once in a lineage of organisms. Here we explore further the potential of idiosyncratic markers and changes to typically conserved tRNA sequences for phylogenetic inference. Hard ticks were chosen as the model group because their phylogeny has been studied extensively. Fifty-eight candidate markers from hard ticks ( family Ixodidae) and 22 markers from the subfamily Rhipicephalinae sensu lato were mapped onto phylogenies of these groups. Two of the most interesting markers, features of the secondary structure of two different tRNAs, gave strong support to the hypothesis that species of the Prostriata ( Ixodes spp.) are monophyletic. Previous analyses of genes and morphology did not strongly support this relationship, instead suggesting that the Prostriata is paraphyletic with respect to the Metastriata ( the rest of the hard ticks). Parallel or convergent evolution was not found in the arrangements of mitochondrial genes in ticks nor were there any reversals to the ancestral arthropod character state. Many of the markers identified were phylogenetically informative, whereas others should be informative with study of additional taxa. Idiosyncratic markers and changes to typically conserved nucleotides in tRNAs that are phylogenetically informative were common in this data set, and thus these types of markers might be found in other organisms.
Resumo:
Recent molecular and morphological studies of the genera Rhipicephalus Koch, 1844 and Boophilus Curtice, 1891 revealed that the five species of Boophilus make the genus Rhipicephalus paraphyletic. Thus, Rhipicephalus Koch, 1844 is not a monophyletic ( natural) lineage and some species of Rhipicephalus are more closely related to the species of Boophilus than to other species of Rhipicephalus. Here, we revise these genera: Boophilus is synonymised with Rhipicephalus, and Rhipicephalus ( sensu lato) ( including Boophilus) is redefined. By synonymising Boophilus with Rhipicephalus, we have changed the nomenclature so that it reflects our understanding of the phylogeny of these ticks. Boophilus is retained as a subgenus of Rhipicephalus, so the synonymy of Boophilus with Rhipicephalus does not result in the loss of the name Boophilus. In addition, Rhipicephalus is a well- known genus and the change proposed is simple - all five species of Boophilus become members of Rhipicephalus ( Boophilus).
Resumo:
We have studied the expression of the green fluorescent protein (GFP) gene to gain more understanding of the effects of additional nucleotide triplets (codons) downstream from the initiation codon on the translation of the GFP mRNA in CHO and Cos1 cells. A leader sequence of six consecutive identical codons (GUG, CUC, AGU or UCA) was introduced into a humanized GFP (hm gfp) gene downstream from the AUG to produce four GFP gene variants. Northern blot and RT-PCR analysis indicated that mRNA transcription from the GFP gene was not significantly affected by any of the additional sequences. However, immunoblotting and FACS analysis revealed that AGU and UCA GFP variants produced GFP at a mean level per cell 3.5-fold higher than the other two GFP variants and the hm gfp gene. [35S]-Methionine labeling and immunoprecipitation demonstrate that GFP synthesis was very active in UCA variant transfected-cells, but not in GUG variant and hm gfp transfected-cells. Moreover, proteasome inhibitor MG-132 treatment indicated that the GFPs encoded by each of the GFP variants and the hm gfp were equally stable, and this together with the comparable mRNA levels observed for each construct suggested that the different steady-state GFP concentrations observed reflected different translation efficiencies of the various GFP genes. In addition, the CUC GFP variant, when transiently transfected into CHO or COS-1 cells, did not produce any GFP expressing cells (fully green cells), and the GUG variant produced GFP expressing cells less than 10%, while AGU and UCA GFP variants up to 30–35% in a time course study from 8 to 36 h posttransfection. Analysis of the potential secondary structure of the GFP variant mRNAs especially in the translation initiation region suggested that the secondary structure of the GFP mRNAs was unlikely to explain the different translation efficiencies of the GFP variants. The present findings indicate that a change of the initiation context of the GFP gene by addition of extra coding sequence can alter the translation efficiency of GFP mRNA, providing a means of more efficient expression of GFP in eukaryotic cells.
Resumo:
Ichthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions. We sequenced the EF-1alpha gene from the ichthyosporean parasite Ichthyophonus irregularis and determined its phylogenetic position using neighbor-joining, parsimony and Bayesian methods. We also sequenced EF-1alpha genes from four chytrids to provide broader representation within fungi. Sequence analyses and the presence of a characteristic 12 amino acid insertion strongly indicate that I. irregularis is a member of Opisthokonta, but do not resolve whether I. irregularis is a specific relative of animals or of fungi. However, the EF-1alpha of I. irregularis exhibits a two amino acid deletion heretofore reported only among fungi. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The entire internal transcribed spacer ( ITS) region, including the 5.8S subunit of the nuclear ribosomal DNA ( rDNA), was sequenced by direct double-stranded sequencing of polymerase chain reaction (PCR) amplified fragments. The study included 40 Sporobolus ( Family Poaceae, subfamily Chloridoideae) seed collections from 14 putative species ( all 11 species from the S. indicus complex and three Australian native species). These sequences, along with those from two out-group species [ Pennisetum alopecuroides ( L.) Spreng. and Heteropogon contortus ( L.) P. Beauv. ex Roemer & Schultes, Poaceae, subfamily Panicoideae], were analysed by the parsimony method (PAUP; version 4.0b4a) to infer phylogenetic relationships among these species. The length of the ITS1, 5.8S subunit and ITS2 region were 222, 164 and 218 base pairs ( bp), respectively, in all species of the S. indicus complex, except for the ITS2 region of S. diandrus P. Beauv. individuals, which was 217 bp long. Of the 624 characters included in the analysis, 245 ( 39.3%) of the 330 variable sites contained potential phylogenetic information. Differences in sequences among the members of the S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur & Schinz and S. jacquemontii Kunth. collections were 0%, while differences ranged from 0 to 2% between these and other species of the complex. Similarly, differences in sequences among collections of S. laxus B. K. Simon, S. sessilis B. K. Simon, S. elongatus R. Br. and S. creber De Nardi were 0%, compared with differences of 1-2% between these four species and the rest of the complex. When comparing S. fertilis ( Steud.) Clayton and S. africanus (Poir.) Robyns & Tourney, differences between collections ranged from 0 to 1%. Parsimony analysis grouped all 11 species of the S. indicus complex together, indicating a monophyletic origin. For the entire data set, pair-wise distances among members of the S. indicus complex varied from 0.00 to 1.58%, compared with a range of 20.08-21.44% among species in the complex and the Australian native species studied. A strict consensus phylogenetic tree separated 11 species of the S. indicus complex into five major clades. The phylogeny, based on ITS sequences, was found to be congruent with an earlier study on the taxonomic relationship of the weedy Sporobolus grasses revealed from random amplified polymorphic DNA ( RAPD). However, this cladistic analysis of the complex was not in agreement with that created on past morphological analyses and therefore gives a new insight into the phylogeny of the S. indicus complex.