813 resultados para SILICON ALLOYS
Resumo:
A number of binary Cu-X alloys (X = Fe, Cr, Si and Al) with alloying elements up to approximate to 12 at % for Fe and Cr, and = 20 at% for Al and Si were cast into thin ribbons (30-50 mu m thickness) by chill block melt spinning. The structural state of the as-cast ribbons was determined by X-ray diffraction (XRD) and microstructures of the quenched alloys were compared with the ingot equivalent, It was possible to achieve solid solution and fine dispersion of secondary phase beyond XRD detection up to approximate to 8 at% solute for Fe and Cr, which is beyond the expected concentration limits from equilibrium phase diagrams. The effects of alloying on resistivity and microhardness are also presented.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
The principle that alloys are designed to accommodate the manufacture of goods made from them as much as the properties required of them in service has not been widely applied to pressed and sintered P/M aluminium alloys. Most commercial alloys made from mixed elemental blends are identical to standard wrought alloys. Alternatively, alloys can be designed systematically using the phase diagram characteristics of ideal liquid phase sintering systems. This requires consideration of the solubilities of the alloying elements in aluminium, the melting points of the elements, the eutectics they form with aluminium and the nature of the liquid phase. The relative diffusivities are also important. Here we show that Al-Sn, which closely follows these ideal characteristics, has a much stronger sintering response than either Al-Cu or Al-Zn, both of which have at least one non-ideal characteristic. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Aluminium alloys that contain Si, Mg, Fe, Mn and/or Cu usually contain one or more types of intermetallic phases that are not readily distinguishable in the microstructure by conventional microscopy methods. It has thus been a challenge to develop a method that will unambiguously identify them. A practical approach has been developed that is based on an inherent linear relationship revealed for the overall distribution of any two elements in a precipitate/matrix geometry and the first-order approximation of electron probe microanalysis (EPMA) results. Application of this approach to a direct chill cast 6082 alloy is demonstrated, and its major limitations are discussed.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The aim of the present work was to increase the electrical conductivity and strength of the Cu-0.7wt%Cr-0.3wt%Fe alloy through selective minor additions (less than or equal to0.15 wt%) of elements expected to promote precipitation of dissolved Fe: Ti, B, P, Ni & Y. Such quaternary alloys with reduced Fe in solid solution would be expected to have properties equivalent to or better than those of the Cu-1%Cr reference alloy (Alloy Z). The investigation showed that none of the trace element additions significantly improved the size of the age hardening response or the peak aged electrical conductivity of Alloy A, although further work is required on the influence of Ti. Additions of P and B were detrimental. Other trace additions had little or no effect apart from causing some slight changes to the precipitation kinetics. The mechanical properties of the Cu-0.7%Cr-0.3%Fe alloy made with less expensive high carbon ferrochrome were found to be inferior to those of the equivalent alloy made with low carbon ferrochrome. (C) 2001 Kluwer Academic Publishers.