720 resultados para SCAFFOLD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on extensive quantitative and qualitative analyses of a corpus of American presidential speeches that includes all inaugural addresses and State of the Union messages from 1789 to 2008, as well as major foreign and security policy speeches after 1945, this research monograph analyzes the various forms and functions of intertextual references found in the discourse of American presidents. Working within an original, interdisciplinary theoretical framework established by theories of intertextuality, discourse analysis, and presidential studies, the book discusses five different types of presidential intertextuality, all of which contribute jointly to creating a set of carefully manipulated and politically powerful images of both the American nation and the American presidency. The book is intended for scholars and students in political and presidential studies, communications, American cultural studies, and linguistics, as well as anyone interested in the American presidency in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 μM) or PD184352 (2 μM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability. © FASEB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung transplantation is a necessary step for the patients with the end-stage of chronic obstructive pulmonary disease. The use of artificial lungs is a promising alternative to natural lung transplantation which is complicated and is restricted by low organ donations. For successful lung engineering, it is important to choose the correct combination of specific biological cells and a synthetic carrier polymer. The focus of this study was to investigate the interactions of human lung epithelial cell line NCl-H292 that is involved in lung tissue development with the biodegradable poly(ϵ-caprolactone) before and after its chemical modification to evaluate potential for use in artificial lung formation. Also, the effect of polymer chemical modification on its mechanical and surface properties has been investigated. The poly(ϵ-caprolactone) surface was modified using aminolysis followed by immobilization of gelatine. The unmodified and modified polymer surfaces were characterized for roughness, tensile strength, and NCl-H292 metabolic cell activity. The results showed for the first time the possibility for NCI-H292 cells to adhere on this polymeric material. The Resazurin assay showed that the metabolic activity at 24 hours post seeding of 80% in the presence of the unmodified and greater than 100% in the presence of the modified polymer was observed. The roughness of the poly(ϵ-caprolactone) increased from 4 nm to 26 nm and the film strength increased from 0.01 kN to 0.045 kN when the material was chemically modified. The results obtained to date show potential for using modified poly(ϵ-caprolactone) as a scaffold for lung tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothesis: The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. Experiments: The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold–dyes interactions were elucidated, and desorption studies were carried out. Findings: The chitosan scaffold presented pore sizes from 50 to 200 lm, porosity of 92.2 ± 1.2% and specific surface area of 1135 ± 2 m2 g 1. The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L 1). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788–3316 mg g 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language is widely recognized as an inescapable mediating tool for professional learning, and with this text we want to contribute to a better understanding of the particular role that guided writing can play in in-service professional reflective learning. We analysed one pre-school teacher’s written portfolio, the construction of which was guided to scaffold deep thinking about (and the transference of theory into) practice during participation in an in-service program about language education. Our case study shows that the writing process sustained robust learning about professional knowing, doing and learning itself: The teacher elaborated an integrative ethical understanding of the discussed theory, fully experienced newly informed practices and assessed her own learning by using theory to confront her previous knowledge and practices. Throughout the portfolio, the learning stance revealed by her voice varied accordingly. The study illustrates the potential of guided writing to scaffold reflective learning in in-service contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.