931 resultados para Rule-based techniques
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
Shopping agents are web-based applications that help consumers to find appropriate products in the context of e-commerce. In this paper we argue about the utility of advanced model-based techniques that recently have been proposed in the fields of Artificial Intelligence and Knowledge Engineering, in order to increase the level of support provided by this type of applications. We illustrate this approach with a virtual sales assistant that dynamically configures a product according to the needs and preferences of customers.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
This study was concerned with the computer automation of land evaluation. This is a broad subject with many issues to be resolved, so the study concentrated on three key problems: knowledge based programming; the integration of spatial information from remote sensing and other sources; and the inclusion of socio-economic information into the land evaluation analysis. Land evaluation and land use planning were considered in the context of overseas projects in the developing world. Knowledge based systems were found to provide significant advantages over conventional programming techniques for some aspects of the land evaluation process. Declarative languages, in particular Prolog, were ideally suited to integration of social information which changes with every situation. Rule-based expert system shells were also found to be suitable for this role, including knowledge acquisition at the interview stage. All the expert system shells examined suffered from very limited constraints to problem size, but new products now overcome this. Inductive expert system shells were useful as a guide to knowledge gaps and possible relationships, but the number of examples required was unrealistic for typical land use planning situations. The accuracy of classified satellite imagery was significantly enhanced by integrating spatial information on soil distribution for Thailand data. Estimates of the rice producing area were substantially improved (30% change in area) by the addition of soil information. Image processing work on Mozambique showed that satellite remote sensing was a useful tool in stratifying vegetation cover at provincial level to identify key development areas, but its full utility could not be realised on typical planning projects, without treatment as part of a complete spatial information system.
Resumo:
The primary objective of this research was to understand what kinds of knowledge and skills people use in `extracting' relevant information from text and to assess the extent to which expert systems techniques could be applied to automate the process of abstracting. The approach adopted in this thesis is based on research in cognitive science, information science, psycholinguistics and textlinguistics. The study addressed the significance of domain knowledge and heuristic rules by developing an information extraction system, called INFORMEX. This system, which was implemented partly in SPITBOL, and partly in PROLOG, used a set of heuristic rules to analyse five scientific papers of expository type, to interpret the content in relation to the key abstract elements and to extract a set of sentences recognised as relevant for abstracting purposes. The analysis of these extracts revealed that an adequate abstract could be generated. Furthermore, INFORMEX showed that a rule based system was a suitable computational model to represent experts' knowledge and strategies. This computational technique provided the basis for a new approach to the modelling of cognition. It showed how experts tackle the task of abstracting by integrating formal knowledge as well as experiential learning. This thesis demonstrated that empirical and theoretical knowledge can be effectively combined in expert systems technology to provide a valuable starting approach to automatic abstracting.
An improved conflicting evidence combination approach based on a new supporting probability distance
Resumo:
To avoid counter-intuitive result of classical Dempster's combination rule when dealing with highly conflict information, many improved combination methods have been developed through modifying the basic probability assignments (BPAs) of bodies of evidence (BOEs) by using a certain measure of the degree of conflict or uncertain information, such as Jousselme's distance, the pignistic probability distance and the ambiguity measure. However, if BOEs contain some non-singleton elements and the differences among their BPAs are larger than 0.5, the current conflict measure methods have limitations in describing the interrelationship among the conflict BOEs and may even lead to wrong combination results. In order to solve this problem, a new distance function, which is called supporting probability distance, is proposed to characterize the differences among BOEs. With the new distance, the information of how much a focal element is supported by the other focal elements in BOEs can be given. Also, a new combination rule based on the supporting probability distance is proposed for the combination of the conflicting evidences. The credibility and the discounting factor of each BOE are generated by the supporting probability distance and the weighted BOEs are combined directly using Dempster's rules. Analytical results of numerical examples show that the new distance has a better capability of describing the interrelationships among BOEs, especially for the highly conflicting BOEs containing non-singleton elements and the proposed new combination method has better applicability and effectiveness compared with the existing methods.
Resumo:
Within the framework of heritage preservation, 3D scanning and modeling for heritage documentation has increased significantly in recent years, mainly due to the evolution of laser and image-based techniques, modeling software, powerful computers and virtual reality. 3D laser acquisition constitutes a real development opportunity for 3D modeling based previously on theoretical data. The representation of the object information rely on the knowledge of its historic and theoretical frame to reconstitute a posteriori its previous states. This project proposes an approach dealing with data extraction based on architectural knowledge and Laser statement informing measurements, the whole leading to 3D reconstruction. The experimented Khmer objects are exposed at Guimet museum in Paris. The purpose of this digital modeling meets the need of exploitable models for simulation projects, prototyping, exhibitions, promoting cultural tourism and particularly for archiving against any likely disaster and as an aided tool for the formulation of virtual museum concept.
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.