496 resultados para Rotatory Inertia
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
''Like Parents, Like Children?'' Using Secondary Data in the Study of Parental Political Influence in Switzerland: This text is devoted to the intergenerational transmission of left-right ideological orientation. Using data from the Swiss Household Panel (www.swisspanel.ch), collected both directly and through intermediaries, it raises the question of the validity of second-hand information, which is discussed on several points. The article also shows that there is a strong long-term coherence between the ideological orientation of parents and their children. It also highlights the fact that the link is not the same for boys as for girls, and it varies between generations. Finally, it shows that strong upward social mobility, compared to the original environment, facilitates emancipation from parental ideology, social inertia being greater for downward and horizontal mobility. Ce texte est consacré à la transmission intergénérationnelle de l'orientation idéologique gauche-droite. Utilisant des données du Panel Suisse de Ménages (www.swisspanel.ch), collectées tant directement que par personnes interposées, il pose la question de la validité des informations de seconde main, qui est étudiée sur plusieurs points. L'article montre en outre qu'il existe à long terme une forte cohérence entre l'orientation idéologique des parents et de leurs enfants. Il met aussi en évidence que ce lien n'est pas la même auprès des garçons qu'auprès des filles, et qu'il varie entre les générations. Finalement, il montre qu'une forte ascension sociale par rapport au milieu d'origine facilite l'émancipation des orientations idéologiques parentales, l'inertie étant plus forte pour les trajectoires descendantes et horizontales.
Resumo:
Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.
Resumo:
OBJECTIVES: To describe the spectrum of pathologies responsible for neck ailments in a primary care pediatric emergency setting and evaluate their outcome. METHODS: All children aged 16 years or younger, who presented to the emergency department of the Children's Hospital of Lausanne during a 1-year period, were retrospectively identified and charts were reviewed. Causes of neck complaints were classified as traumatic (group 1), infectious (group 2), postural (group 3), or miscellaneous (group 4) according to the final diagnosis. History and physical examination findings, radiological and laboratory results, as well as patient outcomes were recorded. RESULTS: During the study period, 28,722 children were observed in the emergency department, and 170 were identified as having neck complaints. The number of patients with neck ailments in group 1 was 105 (62%). Group 2 contained 33 patients (19%), of which 28 (16.5%) had a viral infection and 5 (2.9%) had a bacterial infection. Group 3 contained 30 children (17.6%) and group 4 contained 2 children (1.2%). Cervical spine radiography was performed on an emergency basis in 60 children (57 in group 1, 2 in group 2, and 1 in group 3). Significant abnormalities were observed in 6 children. Cervical computed tomography (CT) was performed in 9 children, from which 5 were in group 1, 3 were in group 2, and 1 was in group 4. The CT scan revealed pathologic findings in 6 children. Follow-up data were available in 135 patients (79.4%), of which 129 (95.6%) experienced complete recovery in less than 2 weeks. Admission to the hospital was necessary in 4 children (1 in group 1 and 3 in group 2), including 2 for emergency surgical drainage of retropharyngeal abscesses. One child with posttraumatic torticollis was treated conservatively as an outpatient and recovered in 7 weeks. One child was had his/her condition eventually diagnosed with osteoid osteoma and treated with oral nonsteroidal anti-inflammatory drug. CONCLUSIONS: Most cases of neck ailments in children presenting to the emergency department were due to trauma or infection, which were effectively managed as outpatients. When signs and symptoms suggested an emergent cause, CT provided a definitive diagnosis. The evaluation of a child presenting with acute neck complaints should be based on history and physical examination. Plain radiographs and CT scan are contributive in selected cases.
Resumo:
In this master's thesis a mechanical model that is driven with variable speed synchronous machine was developed. The developed mechanical model simulates the mechanics of power transmission and its torsional vibrations. The mechanical model was developed for the need of the branched mechanics of a rolling mill and the propulsion system of a tanker. First, the scope of the thesis was to clarify the concepts connected to the mechanical model. The clarified concepts are the variable speed drive, the mechanics of power transmission and the vibrationsin the power transmission. Next, the mechanical model with straight shaft line and twelve moments of inertia that existed in the beginning was developed to be branched considering the case of parallel machines and the case of parallel rolls. Additionally, the model was expanded for the need of moreaccurate simulation to up to thirty moments of inertia. The model was also enhanced to enable three phase short circuit situation of the simulated machine. After that the mechanical model was validated by comparing the results of the developed simulation tool to results of other simulation tools. The compared results are the natural frequencies and mode shapes of torsional vibration, the response of the load torque step and the stress in the mechanical system occurred by the permutation of the magnetic field that is arisen from the three phase short circuit situation. The comparisons were accomplished well and the mechanical model was validated for the compared cases. Further development to be made is to develop the load torque to be time-dependent and to install two frequency converters and two FEM modeled machines to be simulated parallel.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
The active magnetic bearings present a new technology which has many advantages compared to traditional bearing designs. Active magnetic bearings, however, require retainer bearings order to prevent damages in the event of a component, power or a control loop failure. In the dropdown situation, when the rotor drops from the magnetic bearings to the retainer bearings, the design parameters of the retainer bearings have a significant influence on the behaviour of the rotor. In this study, the dynamics of an active magnetic bearings supported electric motor during rotor drop on retainer bearings is studied using a multibody simulation approach. Various design parameters of retainer bearings are studied using a simulation model while results are compared with those found in literature. The retainer bearings are modelled using a detailed ball bearing model, which accounts damping and stiffness properties, oil film and friction between races and rolling elements. The model of the ball bearings includes inertia description of rollingelements. The model of the magnetic bearing system contains unbalances of the rotor and stiffness and damping properties of support. In this study, a computationally efficient contact model between the rotor and the retainer bearings is proposed. In addition, this work introduces information for the design of physicalprototype and its retainer bearings.
Resumo:
The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.
Resumo:
In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.
Resumo:
Belt-drive systems have been and still are the most commonly used power transmission form in various applications of different scale and use. The peculiar features of the dynamics of the belt-drives include highly nonlinear deformation,large rigid body motion, a dynamical contact through a dry friction interface between the belt and pulleys with sticking and slipping zones, cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The life of the belt-drive is critically related on these features, and therefore, amodel which can be used to study the correlations between the initial values and the responses of the belt-drives is a valuable source of information for the development process of the belt-drives. Traditionally, the finite element models of the belt-drives consist of a large number of elements thatmay lead to computational inefficiency. In this research, the beneficial features of the absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to fulfill the following requirements for the successful and efficient analysis of the belt-drive systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the consideration of theeffect of the shear deformation, the exact description of the highly nonlinear deformations and a simple and realistic description of the contact. The use of distributed contact forces and high order beam and plate elements based on the absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives can be obtained with a significantly smaller number of elements and degrees of freedom in comparison to the previously published finite element models of belt-drives. The results of theexamples demonstrate the functionality and suitability of the absolute nodal coordinate formulation for the computationally efficient and realistic modeling ofbelt-drives. This study also introduces an approach to avoid the problems related to the use of the continuum mechanics approach in the definition of elastic forces on the absolute nodal coordinate formulation. This approach is applied to a new computationally efficient two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. The proposed beam element uses a linear displacement field neglecting higher-order terms and a reduced number of nodal coordinates, which leads to fewer degrees of freedom in a finite element.
Resumo:
High dynamic performance of an electric motor is a fundamental prerequisite in motion control applications, also known as servo drives. Recent developments in the field of microprocessors and power electronics have enabled faster and faster movements with an electric motor. In such a dynamically demanding application, the dimensioning of the motor differs substantially from the industrial motor design, where feasible characteristics of the motor are for example high efficiency, a high power factor, and a low price. In motion control instead, such characteristics as high overloading capability, high-speed operation, high torque density and low inertia are required. The thesis investigates how the dimensioning of a high-performance servomotor differs from the dimensioning of industrial motors. The two most common servomotor types are examined; an induction motor and apermanent magnet synchronous motor. The suitability of these two motor types indynamically demanding servo applications is assessed, and the design aspects that optimize the servo characteristics of the motors are analyzed. Operating characteristics of a high performance motor are studied, and some methods for improvements are suggested. The main focus is on the induction machine, which is frequently compared to the permanent magnet synchronous motor. A 4 kW prototype induction motor was designed and manufactured for the verification of the simulation results in the laboratory conditions. Also a dynamic simulation model for estimating the thermal behaviour of the induction motor in servo applications was constructed. The accuracy of the model was improved by coupling it with the electromagnetic motor model in order to take into account the variations in the motor electromagnetic characteristics due to the temperature rise.
Resumo:
Para determinar los factores de explotación relacionados con la reactivación ovárica postparto en vacas nodrizas se realizó un análisis global de una serie de indicadores productivos y la duración del anestro postparto (APP) de 549 vacas explotadas en condiciones extensivas. Debido a la naturaleza multifactorial del proceso en estudio se eligió la metodología estadística multivariante (Análisis Factorial de Correspondencias Múltiples y Análisis Cluster). La duración del APP estuvo asociada a cuatro factores que explicaron el 59% de la heterogeneidad inicial de la muestra y que se definieron como: «Alimentación preparto» (19% de la inercia), «Alimentación postparto-Edad» (16.4%), «Manejo del ternero» (13%) y «Dificultad al parto» (10.5%). Estos factores se introdujeron en un Análisis Cluster que identificó cinco grupos de vacas con características productivas y reproductivas diferentes, y que denominamos como: «Primíparas», «Acceso restringido», «Acceso Libre-Parda de Montaña», «Parto de otoño» y «Parto de primavera». La raza no estuvo relacionada con la duración del APP, aunque el análisis Cluster asoció los largos APP inducidos por la crianza libre con la raza Parda de Montaña. En la raza Parda de Montaña, la duración del APP fue mayor en primavera que en otoño debido a diferencias nutricionales más que a un efecto estacional en sí. El parto de otoño se adaptó mejor a las condiciones de montaña seca.
Resumo:
Työn tarkoituksena oli toteuttaa moottoriajoneuvon suorituskyvyn mittaukseen käytettävä järjestelmä. Järjestelmä koostuu sylinterin muotoisesta rullasta ja tiedonkeruujärjestelmästä. Rullaa, jonka hitausmomentti tunnetaan kiihdytetään ajoneuvon vetopyörien välityksellä ja mitatuista arvoista lasketaan teho ja vääntömomenttiarvot moottorin kierrosluvun funktiona. Tiedonkeruu tapahtuu PC-mikrotietokoneen avulla, johon on liitetty tiedonkeruukortti. PC-mikrotietokone muodostaa käyttöliittymän, jonka avulla saadut tulokset esitetään kuvaajien avulla käyttäjälle. Käyttöliittymän avulla suoritetaan myös tulosten talletus ja raportin tulostus. Teoriaosassa tarkastellaan suorituskyvyn mittaamiseen käytettyjä menetelmiä ja laitteistoja, sekä tiedonkeruujärjestelmän rakennetta ja sen valintaan vaikuttavia tekijöitä. Käytännön osassa suunnitellaan muokkainkortti, jonka avulla erilaisilta antureilta saadut signaalit voidaan sovittaa tiedonkeruukortin tuloalueelle sopiviksi. Myös käyttöliittymän toimintaa ja sen rakentamiseen käytettyjä työkaluja tarkastellaan.
Resumo:
An adequate control of blood pressure is essential to reduce the risk of target organ damages and cardiovascular events in patients with hypertension. Yet, it is well recognized that a substantial proportion of treated patients remain hypertensive despite treatment. Several reasons have been evoked to explain why so many patients are not adequately controlled. Among them, medical inertia, a poor long-term adherence, and the need to prescribe several antihypertensive drugs to reach the target blood pressure have been identified as major limitations to the success of antihypertensive therapy. In this context, the use of single-pill combinations (SPC) containing two or three drugs in one pill has an important role in reducing the impact of some of these issues. Indeed, the use of SPC enables to reduce the pill burden and to improve the treatment efficacy without increasing the incidence of side effects. However, besides their major advantages, SPC have also some limitations such as a possible lack of flexibility or a higher cost. The purpose of this review is to discuss the place of SPC in the actual management of hypertension. The active development of new single-pill combinations in last years can be considered as a significant improvement in the physicians' capacity to treat hypertension effectively.
Resumo:
Són habituals entre els aeromodelistes les discussions que giren al voltant de la potència dels motors d’explosió i quina hèlix va millor. La manca d’informació tècnica dels motors i de les hèlix fa que aquestes discussions de vegades tinguin una validesa molt limitada, doncs es fonamenten simplement en les sensacions i percepcions subjectives de cadascun dels pilots, sobretot quan es parla de potència. En aquest projecte s’utilitzarà un dinamòmetre inercial, consistent en un volant d’inèrcia el qual s’accelerarà fins assolir les revolucions per minut màximes. La acceleració d’aquest volant mesurat en intervals de temps regulars i conegut el moment d’inèrcia del volant ens permetrà calcular el parell motor i la potència a diferents règims de revolucions per minut. Per altra banda es pretén comparar diferents hèlix muntades en un mateix motor per poder-ne comparar la tracció a diferents revolucions per minut. La tracció es mesurarà utilitzant una cèl·lula de càrrega. Les dades d’ambdós bancs de proves seran recollits i emmagatzemats per un PC amb un software fet a mida per aquest projecte. Una vegada finalitzat cada test es mostraran les dades obtingudes, tant els numèricament com gràficament, permetent a més comparar el resultat de diferents tests, de diferents motors i de diferents hèlix.