972 resultados para Riemann-Stieltjes integral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El proyecto de fin de carrera “Implantar un Sistema de Gestión Integral en Software libre” se ha desarrollado en la empresa Avanzosc con sede en Azkoitia. Una peculiaridad del proyecto es que a su vez se ha utilizado como cliente otra empresa, q2K, Soluciones Informáticas en Gestión Estratégica. El objetivo del proyecto es implantar en q2K un sistema de planificación de recursos empresariales (ERP, Enterprise Resource Planning), esto le permite reunir en una única aplicación todos los procesos de negocio de la empresa. La implantación de un ERP requiere de una importante inversión ya que el coste de la licencia de un sistema ERP propietario es elevado. Una interesante alternativa para evitar este desembolso es optar por un de ERP de software libre con todas las ventajas de configuración y personalización. En nuestro caso se ha adoptado OpenERP que es un software integral, modular y adaptable, adecuado para pequeñas y medianas empresas. El desarrollo del proyecto ha estado supervisado por el equipo de trabajo de Avanzosc, empresa líder en España en implantación de OpenErp, siguiendo la metodología de trabajo propia de esta empresa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto se sitúa en el ámbito de las empresas que ofertan servicios informáticos a terceros. Estas empresas se dedican a cubrir las necesidades de gestión de la infraestructura de sistemas y servicios de los clientes. En concreto, los proyectos de ampliación de esas infraestructuras suelen ser bastante problemáticos. Este proyecto desarrolla un conjunto de procedimientos que permiten gestionar la ampliación de una infraestructura de sistemas y servicios de acuerdo a una librería de buenas prácticas denominada ITIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este trabajo es estudiar el Desastre del Titanic, utilizando la metodología del Descubrimiento del Conocimiento (KDD). La tesis propone diferentes variantes de cómo aplicar técnicas de Minería de Datos y herramientas del Aprendizaje Automático para predecir de forma eficiente la sobrevivencia de los pasajeros. Con este fin se han adaptado diferentes algoritmos de pre-procesamiento de datos, selección de variables y clasificación, a las características particulares del problema tratado. Algunos de estos algoritmos han sido implementados o sus implementaciones han sido modificadas para el caso específico del problema del Titanic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is in two parts. In Part I the independent variable θ in the trigonometric form of Legendre's equation is extended to the range ( -∞, ∞). The associated spectral representation is an infinite integral transform whose kernel is the analytic continuation of the associated Legendre function of the second kind into the complex θ-plane. This new transform is applied to the problems of waves on a spherical shell, heat flow on a spherical shell, and the gravitational potential of a sphere. In each case the resulting alternative representation of the solution is more suited to direct physical interpretation than the standard forms.

In Part II separation of variables is applied to the initial-value problem of the propagation of acoustic waves in an underwater sound channel. The Epstein symmetric profile is taken to describe the variation of sound with depth. The spectral representation associated with the separated depth equation is found to contain an integral and a series. A point source is assumed to be located in the channel. The nature of the disturbance at a point in the vicinity of the channel far removed from the source is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we consider smooth analogues of operators studied in connection with the pointwise convergence of the solution, u(x,t), (x,t) ∈ ℝ^n x ℝ, of the free Schrodinger equation to the given initial data. Such operators are interesting examples of oscillatory integral operators with degenerate phase functions, and we develop strategies to capture the oscillations and obtain sharp L^2 → L^2 bounds. We then consider, for fixed smooth t(x), the restriction of u to the surface (x,t(x)). We find that u(x,t(x)) ∈ L^2(D^n) when the initial data is in a suitable L^2-Sobolev space H^8 (ℝ^n), where s depends on conditions on t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the correction terms in Heegaard Floer homology, we prove that if a knot in S3 admits a positive integral T-, O-, or I-type surgery, it must have the same knot Floer homology as one of the knots given in our complete list, and the resulting manifold is orientation-preservingly homeomorphic to the p-surgery on the corresponding knot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.

In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.