365 resultados para Rhesus Macaque


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Certain milk factors may help to promote the growth of a host-friendly colonic microflora (e.g. bifidobacteria, lactobacilli) and explain why breast-fed infants experience fewer and milder intestinal infections than those who are formula-fed. The effects of supplementation of formula with two such milk factors was investigated in this study. Materials and Methods: Infant rhesus macaques were breastfed, fed control formula, or formula supplemented with glycomacropeptide (GMP) or alpha-lactalburnin (alpha-LA) from birth to 5 months of age. Blood was drawn monthly and rectal swabs were collected weekly. At 4.5 months of age, 10(8) colonyforming units of enteropathogenic E.coli O127, strain 2349/68 (EPEC) was given orally and the response to infection assessed. The bacteriology of rectal swabs pre- and post-infection was determined by culture independent fluorescence in situ hybridization. Results: Post-challenge, breast-fed infants and infants fed alpha-LA-supplemented formula had no diarrhea, whilst those infants fed GMP-supplemented formula had intermittent diarrhea. In infants fed control formula the diarrhea was acute. Conclusions: Supplementation of infant formula with appropriate milk proteins may be useful for improving the infant's ability to resist acute infection caused by E.coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Spontaneous gastrointestinal neoplasms in non-human primates are commonly seen in aged individuals. Due to genetic similarities between human and non-human primates, scientists have shown increasing interest in terms of comparative oncology studies.Case presentation: The present study is related to a case of an intestinal leiomyoma in a black crested macaque (Macaca nigra), kept on captivity by Mateca a Zoo, Pereira City, Colombia. The animal had abdominal distension, anorexia, vomiting, diarrhea and behavioral changes. Clinical examination showed an increased volume in the upper right abdominal quadrant caused by a neoplastic mass. The patient died during the surgical procedure. Necropsy revealed several small nodules in the peritoneum with adhesion to different portions of the small and large intestines, liver, stomach and diaphragm. Tissue samples were collected, routinely processed and stained by H&E. Microscopic examination revealed a mesenchymal tumor limited to tunica muscularis, resembling normal smooth muscle cells. Neoplastic cells were positive for alpha-smooth muscle actin and vimentin, and negative for cytokeratin AE1/AE3 by immunohistochemistry. Those morphological and immunohistochemical findings allowed to diagnose the intestinal leiomyoma referred above.Conclusion: Neoplastic diseases in primates have multifaceted causes. Their manifestations are understudied, leading to a greater difficulty in detection and measurement of the real impact provides by this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orbitofrontal cortex (OfC) is a heterogeneous prefrontal sector selectively connected with a wide constellation of other prefrontal, limbic, sensory and premotor areas. Among the limbic cortical connections, the ones with the bippocampus and parabippocampal cortex are particularly salient. Sensory cortices connected with the OfC include areas involved in olfactory, gustatory, somatosensory, auditory and visual processing. Subcortical structures with prominent OfC connections include the amygdala, numerous thalamic nuclei, the striatum, hypothalamus, periaqueductal gray matter, and biochemically specific cell groups in the basal forebrain and brainstem. Architectonic and connectional evidence supports parcellation of the OfC. The rostrally placed isocortical sector is mainly connected with isocortical areas, including sensory areas of the auditory, somatic and visual modalities, whereas the caudal non-isocortical sector is principally connected with non-isocortical areas, and, in the sensory domain, with olfactory and gustatory areas. The connections of the isocortical and non- isocortical orbital sectors with the amygdala, thalamus, striatum, hypotbalamus and periaqueductal gray matter are also specific. The medial sector of the OfC is selectively connected with the bippocampus, posterior parabippocampal cortex, posterior cingulate and retrosplenial areas, and area prostriata, while the lateral orbitofrontal sector is the most heavily connected with sensory areas of the gustatory, somatic and visual modalities, with premotor regions, and with the amygdala.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes. Optical recording studies have demonstrated that thin stripes contain both color-preferring and luminance-preferring modules. These thin stripe color-preferring modules contain spatially organized hue maps, whereas the luminance-preferring modules contain spatially organized luminance-change maps. In this study, the neuronal basis of these hue maps was determined by characterizing the selectivity of neurons for isoluminant hues in multiple penetrations within previously characterized V2 thin stripe hue maps. The results indicate that neurons within the superficial layers of V2 thin stripe hue maps are organized into columns whose aggregated hue selectivity is closely related to the hue selectivity of the optically defined hue maps. These data suggest that thin stripes contain hue maps not simply because of their moderate percentage of hue-selective neurons, but because of the columnar and tangential organization of hue selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual short-term memory (VSTM) is the storage of visual information over a brief time period (usually a few seconds or less). Over the past decade, the most popular task for studying VSTM in humans has been the change detection task. In this task, subjects must remember several visual items per trial in order to identify a change following a brief delay interval. Results from change detection tasks have shown that VSTM is limited; humans are only able to accurately hold a few visual items in mind over a brief delay. However, there has been much debate in regard to the structure or cause of these limitations. The two most popular conceptualizations of VSTM limitations in recent years have been the fixed-capacity model and the continuous-resource model. The fixed-capacity model proposes a discrete limit on the total number of visual items that can be stored in VSTM. The continuous-resource model proposes a continuous-resource that can be allocated among many visual items in VSTM, with noise in item memory increasing as the number of items to be remembered increases. While VSTM is far from being completely understood in humans, even less is known about VSTM in non-human animals, including the rhesus monkey (Macaca mulatta). Given that rhesus monkeys are the premier medical model for humans, it is important to understand their VSTM if they are to contribute to understanding human memory. The primary goals of this study were to train and test rhesus monkeys and humans in change detection in order to directly compare VSTM between the two species and explore the possibility that direct species comparison might shed light on the fixed-capacity vs. continuous-resource models of VSTM. The comparative results suggest qualitatively similar VSTM for the two species through converging evidence supporting the continuous-resource model and thereby establish rhesus monkeys as a good system for exploring neurophysiological correlates of VSTM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macaque cortical visual system is hierarchically organized into two streams, the ventral stream for recognizing objects and the dorsal stream for analyzing spatial relationships. The ventral stream extends from striate cortex or area V1 to inferior temporal cortex (IT) through extra-striate areas V2 and V4. Between V1 and V2, the ventral stream consists of two roughly parallel sub-streams, one extending from the cytochrome oxidase (CO) rich blobs in V1 to the CO rich thin stripes in V2, the other extending from the interblobs in V1 to interstripes, in V2. The blob-dominated sub-stream is thought to analyze the surface features such as color, whereas the interblob-dominated one is thought to analyze the contour features such as shape. ^ In the current study, the organization of cortical pathways linking V2 thin stripe and interstripe compartments with area V4 was investigated using a combination of physiological and anatomical techniques. Different compartments of V2 were first characterized, in vivo, using optical recording of intrinsic cortical signals. These functionally derived maps of V2 stripe compartments were then used to guide iontophoretic injections of multiple, distinguishable, anterograde tracers into specific V2 compartments. The distribution of labeled axons was analyzed either in horizontal sections through the prelunate gyrus, or in tangentially sectioned portions of physically unfolded cortex containing the lunate sulcus, prelunate gyrus and superior temporal sulcus. When a V2 thin stripe and adjacent interstripe were injected with distinguishable tracers, a large primary and several secondary foci were observed in V4. The primary focus from the thin stripe injection was spatially segregated from the primary focus from the V2 interstripe injection, suggesting a retention of the pattern of compartmentation. ^ We examined the distribution of retrogradely labeled cells in V1 following the injections of tracers into V2 different compartments, in order to quantitate just how parallel the two sub-streams are from V1 to V2. Our results suggest that both blobs and interblobs project to thin stripes in V2, whereas only interblobs project to interstripes. This asymmetrical segregation argues against the original proposal of strict parallelism. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Completion of fungal, plant and human genomes paved the way to the identification of erythrocytic rhesus proteins and their kidney homologs as ammonium transporters. Ammonium is the preferred nitrogen source of bacteria and fungi, and plants acquire nitrogen from the soil in the form of ammonium [1]. In animals and humans, assimilated forms of nitrogen - amino acids - are much preferred for nutrition, and, in the case of ammonotelic animals, ammonium is used for the excretion of nitrogen instead. In the human kidney, ammonium is produced, reabsorbed and excreted as a means to maintain pH balance and to get rid of surplus inorganic nitrogen. Whether ammonium transport also has a role in the pH regulation of other organs is not known and the molecular mechanisms were not, up to now, understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^