940 resultados para Reward (Theology)
Resumo:
The purpose of our study was to assess whether prairie voles find alcohol rewarding. Prairie voles have recently become a species of interest for alcohol studies, which have traditionally used other rodent model species including several different strains of mice and rats. The prairie vole is one of only two known rodent species that readily administers high levels of unsweetened alcohol, implicating it as a potentially effective animal model for studying alcohol abuse. However, voluntary consumption does not necessarily imply that prairie voles find it rewarding. Therefore the purpose of our study was to investigate if alcohol has rewarding properties for prairie voles using three different approaches: place conditioning, flavor conditioning, and immunohistochemistry. Furthermore, we sought to characterize their reward profile and compare it to other commonly used rodent models ¿ C57BL/6 mice, DBA/2J mice, and Sprague-Dawley rats. Place and flavor conditioning are behavioral methods that rely on the learned association between a stimulus and the effects of a drug; the drug of interest in these studies is alcohol. To assess whether prairie voles will demonstrate a conditioned preference for alcohol-paired stimuli, seven place conditioning studies were run that investigated a range of different doses, individual conditioning session durations, and trial durations. Video analysis revealed no difference in the amount of time spent on the alcohol-paired floor, suggesting no conditioned place preference for alcohol. Two flavor conditioning tests were conducted to assess whether voles would demonstrate a preference for an alcohol-paired flavored saccharin solution. Voles demonstrated reduced consumption of the alcohol-paired flavored saccharin solution, regardless of dose or flavor, when alcohol administration occurred after conditioning sessions (p=<0.001). When alcohol was administered before conditioning sessions, no difference in consumption of the alcohol-paired and saline-paired flavored saccharin solutions was seen (p=0.545). Previous studies that have documented similar behavior have hypothesized that this is an example of an anticipatory contrast effect. This theory proposes that prairie voles reduce their intake of a hedonic solution (flavored saccharin solution) in anticipation of later drug administration (alcohol). However, conditioning-based behavioral methods of studying alcohol reward are highly sensitive to the parameters of the conditioned stimulus, thus it is possible that voles will not show preference for alcohol-related stimuli, even if they do find alcohol rewarding. Immunohistochemical analysis supplemented this behavioral data by allowing us to identify specific neural regions that were directly activated in response to the acute administration of alcohol. No difference in the number of activated c-Fos neurons in the Nucleus Accumbens (NAc) core or shell was seen (p=0.3364; p=0.6698) in animals that received an acute injection of alcohol or saline. There was a significant increase in the number of activated c-Fos neurons in the Paraventricular Nucleus of the Hypothalamus (PVN) in alcohol-treated animals compared to saline-treated animals (p=0.0034). There was no difference in the pixel count of activated c-Fos neurons or in the % area activated in the Arcuate Nucleus between alcohol and saline-treated animals (p=0.4523; p=0.3304). In conclusion, the place conditioning studies that were conducted in this thesis suggest that prairie voles do not demonstrate preference or aversion towards alcohol-paired stimuli. The flavor conditioning studies suggest that prairie voles do not demonstrate aversion but rather avoidance of the alcohol-paired flavor in anticipation of future alcohol administration. The preliminary immunohistochemical data collected is inconclusive but cannot rule out the possibility of neuronal activation patterns indicative of reward. Taken together, our data indicate that prairie voles hav
Resumo:
BACKGROUND: Stress-related hypercoagulability might link job stress with atherosclerosis. PURPOSE: This paper aims to study whether overcommitment, effort-reward imbalance, and the overcommitment by effort-reward imbalance interaction relate to an exaggerated procoagulant stress response. METHODS: We assessed job stress in 52 healthy teachers (49 +/- 8 years, 63% women) at study entry and, after a mean follow-up of 21 +/- 4 months, when they underwent an acute psychosocial stressor and had coagulation measures determined in plasma. In order to increase the reliability of job stress measures, entry and follow-up scores of overcommitment and of effort-reward imbalance were added up to total scores. RESULTS: During recovery from stress, elevated overcommitment correlated with D-dimer increase and with smaller fibrinogen decrease. In contrast, overcommitment was not associated with coagulation changes from pre-stress to immediately post-stress. Effort-reward imbalance and the interaction between overcommitment and effort-reward imbalance did not correlate with stress-induced changes in coagulation measures. CONCLUSIONS: Overcommitment predicted acute stress-induced hypercoagulability, particularly during the recovery period.
Resumo:
The reward systemin schizophrenia has been linked to the emergence of delusions on the one hand and to negative symptoms such as affective flattening on the other hand. Previous Diffusion Tensor Imaging (DTI) studies reported white matter microstructure alterations of regions related to the reward system. The present study aimed at extending these findings by specifically investigating connection pathways of the reward system in schizophrenia. Therefore, 24 patients with schizophrenia and 22 healthy controls matched for age and gender underwent DTI-scans. Using a probabilistic fiber tracking approachwe bilaterally extracted pathways connecting the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), themedial and lateral orbitofrontal cortices (mOFC, lOFC), the dorsolateral prefrontal cortex (dlPFC) and the amygdala; as well as pathways connecting NAcc with mOFC, lOFC, dlPFC and amygdala resulting in a total of 18 connections. Probability indices forming part of a bundle of interest (PIBI) were compared between groups using independent t-tests. In 6 connection pathways PIBI-valueswere increased in schizophrenia. In 3 of these pathways the spatial extension of connection pathways was decreased. In schizophrenia patients, there was a negative correlation of PIBI-values and PANSS negative scores in the left VTA–amygdala and in the left NAcc–mOFC connection. A sum score of delusions and hallucinations correlated positively with PIBI-values of the left amygdala–NAcc connection. Structural organization of specific segments ofwhite matter pathways of the reward systemin schizophrenia may contribute to the emergence of delusions and negative symptoms in schizophrenia.
Resumo:
Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.