429 resultados para Retinopathy
Resumo:
Angiopoietin-2 (Ang-2) antagonises the maturing effect of angiopoietin-1 (Ang-1) on blood vessels, and cooperates with VEGF to induce neovascularisation. In knockout mice, Ang-2 displayed a specific role in postnatal angiogenic remodelling. Here, we demonstrate that mice deficient in Ang-2 fail to form a proper spatial retinal vascular network. The retinal vasculature was characterised by reduced large vessel numbers and defects forming the superficial periphery mostly on the arteriolar site, and the secondary and tertiary deep capillary network. Hypoxia in the retinal periphery induced a four-fold VEGF upregulation and active endothelial proliferation for up to 60 days. Concomitantly, retinal digest preparations showed increased arteriolar (+33%) and capillary diameters (+90%), and fluorescein angiograms revealed leakiness of neovascular front. At one year of age, persistent preretinal vessels were non-leaky in accordance with a relative increase in the ratio of Ang-1 to VEGF. Taken together, the data suggest that Ang-2 has an important function in the spatial configuration of the three-dimensional retinal vasculature. Secondarily, prolonged VEGF activity results in a model of persistent proliferative retinopathy.
Resumo:
The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.
Resumo:
BACKGROUND Treatment of retinopathy of prematurity (ROP) stage 3 plus with bevacizumab is still very controversial. We report the outcome of 6 eyes of 4 premature infants with ROP stage 3 plus disease treated with ranibizumab monotherapy. METHODS Six eyes of 4 premature infants with threshold ROP 3 plus disease in zone II, were treated with one intravitreal injection of 0.03 ml ranibizumab. No prior laser or other intravitreal therapy was done. Fundus examination was performed prior to the intervention and at each follow-up visit. Changes in various mean vital parameters one week post intervention compared to one week pre-intervention were assessed. RESULTS The gestational age (GA) of patient 1, 2, 3, and 4 at birth was 24 5/7, 24 5/7, 24 4/7, and 26 1/7 weeks, respectively. The birth weight was 500 grams, 450 grams, 665 grams, and 745 grams, respectively. The GA at the date of treatment ranged from 34 3/7 to 38 6/7 weeks. In one infant, upper air way infection was observed 2 days post injection of the second eye. Three eyes required paracentesis to reduce the intraocular pressure after injection and to restore central artery perfusion. After six months, all eyes showed complete retinal vascularisation without any signs of disease recurrence. CONCLUSIONS Treatment of ROP 3 plus disease with intravitreal ranibizumab was effective in all cases and should be considered for treatment. One infant developed an upper air way infection suspicious for nasopharyngitis, which might be a possible side effect of ranibizumab. Another frequent complication was intraocular pressure rise after injection. More patients with longer follow-up duration are mandatory to confirm the safety and efficacy of this treatment. TRIAL REGISTRATION NUMBER NCT02164604 ; Date of registration: 13.06.2014.
Resumo:
To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^
Resumo:
This cross-sectional study examines the prevalence of selected potential risk factors by stage of diabetic retinopathy (DR) among Black American women with non-insulin-dependent diabetes mellitus (NIDDM) followed at a university diabetes clinic. DR was assessed by ophthalmoscopy and five-field retinography, and graded on counts of microaneurysms, hemorrhages and/or exudates, and presence of proliferative DR. Prevalence of other vascular diseases was assessed from medical records. Potential risk factors included age, known duration of diabetes, type of hypoglycemic treatment, concentrations of random capillary blood glucose, glycosylated hemoglobin, urine protein and fibrinogen, body mass index, and blood pressure. Prevalence of these risk factors is reported for three categories: No DR, mild background DR, severe background or proliferative DR (including surgically treated DR). Duration, age at diagnosis and treatment of diabetes, concentration of urine protein and average blood glucose, hypertension and cardiovascular disease were significantly associated with DR in univariate analysis. The covariance analysis employed stratification on duration, age at diagnosis and therapy of diabetes. The highest DR scores were calculated for those diagnosed before age 45, regardless of duration, therapy, or average blood glucose. Only individuals diagnosed before age 45 had high blood glucose concentrations in all categories of duration. These findings suggest that in this clinic population of Black women, those diagnosed with NIDDm before age 45 who eventually required insulin treatment were at the greatest risk of developing DR and that longterm poor glucose control is a contributing factor. These results suggest that greater emphasis be placed on this subgroup in allocating the limited resources available to improve the quality of glucose regulation, particularly through measures affecting compliance behavior.^ Findings concerning the association of DR with concentration of blood glucose and urine protein, blood pressure/hypertension and weight were compared with those reported from American Indian and Mexican American populations of the Southwestern United States where prevalence of NIDDM, hypertension and obesity is also high. Additional comparative analyses are outlined to substantiate the preliminary finding that there are systematic differences between these ethnic populations. ^
Resumo:
The prevalence of diabetes in Mexican Americans is disproportionately higher than in non-Hispanic whites. The rate of diabetic retinopathy resulting from prolonged diabetes is also greater in Mexican Americans than in non-Hispanic whites. A longitudinal study was carried out on data collected from Mexican Americans in Starr County, Texas to assess the association between socioeconomic and acculturation factors with diabetic retinopathy prevalence, incidence, and progression in those free of diabetic retinopathy or who had only early non-proliferative diabetic retinopathy. A multivariable analysis was done. ^ The incidence rate was 12.78 cases per year and the progression rate was 8.55 cases per year. The baseline characteristics of the population revealed that more people with occupations synonymous with lower income jobs like trade workers and machine operators had early non-proliferative diabetic retinopathy. A multivariable analysis revealed that those with early non-proliferative diabetic retinopathy were more likely to have been born in Mexico as compared to those free of diabetic retinopathy. Surprisingly, a multivariable analysis also showed that those that progressed in diabetic retinopathy disease status were more likely to have been employed as compared to those that did not. ^ This analysis reveals that Mexican Americans are heterogeneous in socioeconomic and acculturation factors that may be used to deter the incidence and progression of diabetic retinopathy severity. These findings could be targeted to create culturally sensitive intervention programs that will improve the detection and treatment of diabetic retinopathy in the work arena in addition to programs that will impact those that do not work. Workplace preventative health screenings and dissemination of language-specific informational brochures is warranted to curb the rates of progression in those employed. ^ A limitation of this study is the narrow surrogates used for assessing socioeconomic and acculturation status. To fully evaluate these variables, a study using a questionnaire with a multitude of surrogates for socioeconomic and acculturation factors should be employed.^
Resumo:
Humans who have inherited the class I major histocompatibility allele HLA-A29 have a markedly increased relative risk of developing the eye disease termed birdshot chorioretinopathy. This disease affecting adults is characterized by symmetrically scattered, small, cream-colored spots in the fundus associated with retinal vasculopathy and inflammatory signs causing damage to the ocular structures, leading regularly to visual loss. To investigate the role of HLA-A29 in this disease, we introduced the HLA-A29 gene into mice. Aging HLA-A29 transgenic mice spontaneously developed retinopathy, showing a striking resemblance to the HLA-A29-associated chorioretinopathy. These results strongly suggest that HLA-A29 is involved in the pathogenesis of this disease. Elucidation of the role of HLA-A29 should be assisted by this transgenic model.
Resumo:
Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.
Resumo:
Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.
Resumo:
Diseases characterized by retinal neovascularization are among the principal causes of visual loss worldwide. The hypoxia-stimulated expression of vascular endothelial growth factor (VEGF) has been implicated in the proliferation of new blood vessels. We have investigated the use of antisense phosphorothioate oligodeoxynucleotides against murine VEGF to inhibit retinal neovascularization and VEGF synthesis in a murine model of proliferative retinopathy. Intravitreal injections of two different antisense phosphorothioate oligodeoxynucleotides prior to the onset of proliferative retinopathy reduced new blood vessel growth a mean of 25 and 31% compared with controls. This inhibition was dependent on the concentration of antisense phosphorothioate oligodeoxynucleotides and resulted in a 40-66% reduction in the level of VEGF protein, as determined by Western blot analysis. Control (sense, nonspecific) phosphorothioate oligodeoxynucleotides did not cause a significant reduction in retinal neovascularization or VEGF protein levels. These data further establish a fundamental role for VEGF expression in ischemia-induced proliferative retinopathies and a potential therapeutic use for antisense phosphorothioate oligodeoxynucleotides.
Resumo:
The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy.
Resumo:
Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Although diabetic retinopathy (DR) remains a leading cause of vision loss, the last decade has brought significant advances in the diagnosis and treatment of this common complication of diabetes mellitus. First, optical coherence tomography allows for noninvasive imaging of the retina, in particular, the macula, with very high resolution, thus facilitating the management of diabetic macular edema. In addition, recent advances in the understanding of the pathophysiology of DR, in particular, the key role of cytokines, such as vascular endothelial growth factor (VEGF), have led to the development of anti-VEGF antibodies for intraocular use. Anti-VEGF therapies have largely replaced laser photocoagulation for the treatment of diabetic macular edema. The benefit of intravitreal anti-VEGF in diabetic macular edema has been proven in numerous large randomized controlled trials. Moreover, a role of inflammation in DR has been recognized, and several mainly steroid-based, anti-inflammatory agents for intravitreal treatment have been shown to be effective. Despite these recent advances, strict systemic control of glycemia remains the cornerstone of the management of DR, significantly reducing ocular complications. This chapter will provide an overview of current and novel concepts of DR and will allude to promising novel therapeutic options for this sight-threatening disease.