854 resultados para Representation. Rationalities. Race. Recognition. Culture. Classification.Ontology. Fetish.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Comunicação, Programa de Pós-Graduação em Comunicação, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presents constructs from classification theory and relates them to the study of hashtags and other forms of tags in social media data. Argues these constructs are useful to the study of the intersectionality of race, gender, and sexuality. Closes with an introduction to an historical case study from Amazon.com.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the beginning of Physical Education entrance in the brazilin public schools, the game has been frequently used as content, and in the course of time that practice seems to be intensified. In spite of many approaches of different purposes to justify its pedagogic usefulness, the game has been used as an indiscriminate way due to the fascination that it provides to the students. The present study searches for a description and analysis of children`s (10-12 years old) attitudes behaviors in games, on Physical Education classes, inside a public school. The study was accomplished with the researcher also attending as a teacher (action research). For the accomplishment of the study 55 children were filmed in four different games, of different kinds (exposed, transformed, and spontaneous). The classes` description and analysis were focused in the attitude axis and it was defined four topics for the discussion: Conflicts, Respect of rules, Expressiveness, and Competitiveness. The relationship between the individual with the game and its culture were pointed as the main characteristics in the configuration of the ludicrous activity atmosphere. It was also possible to observe specific situations of this relationship, once the games were limited to the social games (Piaget category), in a school atmosphere where children have students roles. Due to the obtained results, the study proposes a reflexive practice in which the students notice their own attitudes and try to adapt the game to their needs and not he other way around. In this perspective, the teacher has an important mediator roll, once he will be responsible to point out the students` difficulties and promote discussions in favor to provide teamwork.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views; in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency, recency, and type of prior exposure to very low-and high-frequency words were manipulated in a 3-phase (i.e., familiarization training, study, and test) design. Increasing the frequency with which a definition for a very low-frequency word was provided during familiarization facilitated the word's recognition in both yes-no (Experiment 1) and forced-choice paradigms (Experiment 2). Recognition of very low-frequency words not accompanied by a definition during familiarization first increased, then decreased as familiarization frequency increased (Experiment I). Reasons for these differences were investigated in Experiment 3 using judgments of recency and frequency. Results suggested that prior familiarization of a very low-frequency word with its definition may allow a more adequate episodic representation of the word to be formed during a subsequent study trial. Theoretical implications of these results for current models of memory are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current theoretical thinking about dual processes in recognition relies heavily on the measurement operations embodied within the process dissociation procedure. We critically evaluate the ability of this procedure to support this theoretical enterprise. We show that there are alternative processes that would produce a rough invariance in familiarity (a key prediction of the dual-processing approach) and that the process dissociation procedure does not have the power to differentiate between these alternative possibilities. We also show that attempts to relate parameters estimated by the process dissociation procedure to subjective reports (remember-know judgments) cannot differentiate between alternative dual-processing models and that there are problems with some of the historical evidence and with obtaining converging evidence. Our conclusion is that more specific theories incorporating ideas about representation and process are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CysView is a web-based application tool that identifies and classifies proteins according to their disulfide connectivity patterns. It accepts a dataset of annotated protein sequences in various formats and returns a graphical representation of cysteine pairing patterns. CysView displays cysteine patterns for those records in the data with disulfide annotations. It allows the viewing of records grouped by connectivity patterns. CysView's utility as an analysis tool was demonstrated by the rapid and correct classification of scorpion toxin entries from GenPept on the basis of their disulfide pairing patterns. It has proved useful for rapid detection of irrelevant and partial records, or those with incomplete annotations. CysView can be used to support distant homology between proteins. CysView is publicly available at http://research.i2r.a-star.edu.sg/CysView/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.