981 resultados para Remotely-sensed Data


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Without doubt, global climate change is directly linked to the anthropogenic release of greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). Therefore, research efforts to comprehend the global carbon cycle have increased during the last years. In the context of the observed changes, it is of particular interest to decipher the role of the hydro-, bio- and atmospheres and how the different compartments of the earth system are affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine carbon cycle represents the most important component in this respect. Numerous findings suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an exact quantification of such fluxes of material is hard to achieve for large areas, not least on account of the inaccessibility of this remote region. In particular, there exist so far only few accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water oxygen profiles, as one possible method. However the ex situ flux determinations carried out on sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been published for the Southern Ocean. During the Antarctic Expedition ANT-XXI/4, within the framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive benthic organic carbon fluxes. Having both types of measurements from the same locations, it was possible to establish a depth-related correction function which was applied subsequently to revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a consistent data base of benthic carbon inputs covering many important sub-regions of the Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). Including additional locations on the Antarctic Shelf, there are now 134 new and revised measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic carbon fluxes and sedimentary oxygen penetration depth values are available. Further, benthic carbon fluxes were empirically related to dominant diatom distributions in surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals significantly higher export efficiencies for the Southern Ocean than have previously been assumed, especially for the area of the opal belt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying cloud interference in satellite-derived data is a critical step toward developing useful remotely sensed products. Most MODIS land products use a combination of the MODIS (MOD35) cloud mask and the 'internal' cloud mask of the surface reflectance product (MOD09) to mask clouds, but there has been little discussion of how these masks differ globally. We calculated global mean cloud frequency for both products, for 2009, and found that inflated proportions of observations were flagged as cloudy in the Collection 5 MOD35 product. These erroneously categorized areas were spatially and environmentally non-random and usually occurred over high-albedo land-cover types (such as grassland and savanna) in several regions around the world. Additionally, we found that spatial variability in the processing path applied in the Collection 5 MOD35 algorithm affects the likelihood of a cloudy observation by up to 20% in some areas. These factors result in abrupt transitions in recorded cloud frequency across landcover and processing-path boundaries impeding their use for fine-scale spatially contiguous modeling applications. We show that together, these artifacts have resulted in significantly decreased and spatially biased data availability for Collection 5 MOD35-derived composite MODIS land products such as land surface temperature (MOD11) and net primary productivity (MOD17). Finally, we compare our results to mean cloud frequency in the new Collection 6 MOD35 product, and find that landcover artifacts have been reduced but not eliminated. Collection 6 thus increases data availability for some regions and land cover types in MOD35-derived products but practitioners need to consider how the remaining artifacts might affect their analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Beginning in the era of the Spanish conquest and taking the reader right up to the present day, this book focuses on how the landscape of Cuba has changed and evolved into the environment we see today. It illustrates the range of factors – economic, political and cultural – that have determined Cuba’s physical geography, and explores the shifting conservation measures which have been instituted in response to new methods in agriculture and land management. The text uses historical documents, fieldwork, Geographic Information System (GIS) data and remotely-sensed satellite imagery to detail Cuba’s extensive land-use history as well as its potential future. The author goes further to analyze the manner, speed and methods of landscape change, and examines the historical context and governing agendas that have had an impact on the relationship between Cuba’s inhabitants and their island. Gebelein also assesses the key role played by agricultural production in the framework of international trade required to sustain Cuba’s people and its economy. The book concludes with a review of current efforts by Cuban and other research scientists, as well as private investors, conservation managers and university professors who are involved in shaping Cuba’s evolving landscape and managing it during the country’s possible transition to a more politically diverse, enfranchised and open polity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The scatterometer SeaWinds on QuikSCAT provided regular measurements at Ku-band from 1999 to 2009. Although it was designed for ocean applications, it has been frequently used for the assessment of seasonal snowmelt patterns aside from other terrestrial applications such as ice cap monitoring, phenology and urban mapping. This paper discusses general data characteristics of SeaWinds and reviews relevant change detection algorithms. Depending on the complexity of the method, parameters such as long-term noise and multiple event analyses were incorporated. Temporal averaging is a commonly accepted preprocessing step with consideration of diurnal, multi-day or seasonal averages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN] The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.