948 resultados para Relative Homological Algebra
Resumo:
PURPOSE: Afferent asymmetry of visual function is detectable in both normal and pathologic conditions. With a computerized test, we assessed the variability in measuring afferent asymmetry of the pupillary light reflex, that is, the relative afferent pupillary defect. METHODS: In ten normal subjects, pupillary responses to an alternating light stimulus were recorded with computerized infrared pupillography. The relative afferent pupillary defect for each test was determined by using a new computer analysis. The 95% confidence interval of each determination of relative afferent pupillary defect was used to represent the short-term fluctuation in its measurement. To optimize the test for clinical use, we studied the influence of stimulus intensity, duration, and number on the variability of the relative afferent pupillary defect. RESULTS: When the relative afferent pupillary defect was based on only a few light alternations (stimulus pairs), there was excessive variability in its measurement (95% confidence interval > 0.5 log units). With approximately 200 stimulus pairs, the 95% confidence interval was reduced to less than 0.1 log unit (relative afferent pupillary defect +/- 0.05 log unit). Also, there was less variability when the dark interval between alternating light stimulation was less than one second. CONCLUSIONS: Computerized infrared pupillography can standardize the alternating light test and minimize the error in quantifying a relative afferent pupillary defect. A reproducible relative afferent pupillary defect measurement is desirable for defining afferent injury and following the course of disease.
Resumo:
Collection : Les archives de la Révolution française ; 11.1a.128
Resumo:
Collection : Les archives de la Révolution française ; 11.1a.446
Resumo:
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
Échelle(s) : [1:3 400 000 ca] Échelle de Lieues d'une heure, ou de 20 au Degré 80 = [10,4 cm] (d'après échelles graphiques).
Resumo:
Échelle(s) : [1:3 400 000 ca] Échelle de Lieues d'une heure, ou de 20 au Degré 80 = [10,4 cm] (d'après échelles graphiques).