987 resultados para Region growing algorithms
Resumo:
Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification.
Resumo:
The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.
Resumo:
Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.
Resumo:
Background. Giant Condyloma Acuminatum (GCA) is a rare, slow growing, large cauliflower tumor of the penile foreskin and perianal region with benign histologic appearance but high propensity for local invasion and recurrences. GCA is associated with Human Papilloma Virus (HPV) types 6 and 11 and it also has considerable risk of neoplastic transformation into fully invasive squamous cell carcinoma into about 5 years. Objective. Because of the rarity of perianal GCA, to date there is no general agreement on the best method for treatment. We wanted to know if surgical approach only was a good method to treat our case. Case report. A 28 years old man, HIV-negative, with a 4 years history of perianal GCA quickly growing underwent full tickness local excision at least 0,7 cm margin of normal tissue with skin grafting taken from the thighs. Fecal contamination was avoided by diet and loperamide per os. At two years follow-up no recurrence was detected. Conclusion. Surgical approach with full tickness excision and immediate skin-grafting and regular follow-up demonstrated effective to treat GCA and to minimize disease recurrence.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
Phenotypic variation in plants can be evaluated by morphological characterization using visual attributes. Fruits have been the major descriptors for identification of different varieties of fruit crops. However, even in their absence, farmers, breeders and interested stakeholders require to distinguish between different mango varieties. This study aimed at determining diversity in mango germplasm from the Upper Athi River (UAR) and providing useful alternative descriptors for the identification of different mango varieties in the absence of fruits. A total of 20 International Plant Genetic Resources Institute (IPGRI) descriptors for mango were selected for use in the visual assessment of 98 mango accessions from 15 sites of the UAR region of eastern Kenya. Purposive sampling was used to identify farmers growing diverse varieties of mangoes. Evaluation of the descriptors was performed on-site and the data collected were then subjected to multivariate analysis including Principal Component Analysis (PCA) and Cluster analysis, one- way analysis of variance (ANOVA) and Chi square tests. Results classified the accessions into two major groups corresponding to indigenous and exotic varieties. The PCA showed the first six principal components accounting for 75.12% of the total variance. A strong and highly significant correlation was observed between the color of fully grown leaves, leaf blade width, leaf blade length and petiole length and also between the leaf attitude, color of young leaf, stem circumference, tree height, leaf margin, growth habit and fragrance. Useful descriptors for morphological evaluation were 14 out of the selected 20; however, ANOVA and Chi square test revealed that diversity in the accessions was majorly as a result of variations in color of young leaves, leaf attitude, leaf texture, growth habit, leaf blade length, leaf blade width and petiole length traits. These results reveal that mango germplasm in the UAR has significant diversity and that other morphological traits apart from fruits can be useful in morphological characterization of mango.
Resumo:
66 p.
Resumo:
Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.
Resumo:
In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.
Resumo:
This study aims to identify the flora and vegetation of rocky outcrops of low altitude and confined in the municipalities of Sobral, Groaíras and Santa Quitéria (Ceará state, Brazil), to propose a phytosociological classification for the xerophilous communities. We selected five stations in areas with high proportion of bare rock (> 80%), and the field work were conducted in March 2014 and 2015 respectively (3º 56’ S and 40º 23’ W, 4º 01’ S and 40º 05’ W, 4º 07’’ S and 40º 08’ W, 4º 09’ S and 40º 09’ W and 4º 03’ S and 40º 00’ W). Floristic relevés were made following the Braun-Blanquet classic sigmatist method. The minimum areas of the floristic relevés vary between 8 e 16 m². All the plant species growing in cracks, crevices and vegetation "spots" that can be found in these habitats were identified. The classification of the relevés was made through the Twinspan. The floristic list is composed of 89 species, distributed in 61 genera and 29 families. Fabaceae was the most representative in species richness, 20 species, followed by Poaceae (10 spp.), Euphorbiaceae (7 spp.) and Convolvulaceae (6 spp.). 22 Brazilian endemisms have been identified. Based in the phytosociological analysis and in the classification results we identified five groups and two communities can be clearly distinguished: community of Pilosocereus gounellei FA.C.Weber) Byles & Rowley and Encholirium spectabile Mart. ex Schult. & Schult.f. and the community of Crateva tapia L. and Combretum leprosum Mart..
Resumo:
Crop monitoring and more generally land use change detection are of primary importance in order to analyze spatio-temporal dynamics and its impacts on environment. This aspect is especially true in such a region as the State of Mato Grosso (south of the Brazilian Amazon Basin) which hosts an intensive pioneer front. Deforestation in this region as often been explained by soybean expansion in the last three decades. Remote sensing techniques may now represent an efficient and objective manner to quantify how crops expansion really represents a factor of deforestation through crop mapping studies. Due to the special characteristics of the soybean productions' farms in Mato Grosso (area varying between 1000 hectares and 40000 hectares and individual fields often bigger than 100 hectares), the Moderate Resolution Imaging Spectroradiometer (MODIS) data with a near daily temporal resolution and 250 m spatial resolution can be considered as adequate resources to crop mapping. Especially, multitemporal vegetation indices (VI) studies have been currently used to realize this task [1] [2]. In this study, 16-days compositions of EVI (MODQ13 product) data are used. However, although these data are already processed, multitemporal VI profiles still remain noisy due to cloudiness (which is extremely frequent in a tropical region such as south Amazon Basin), sensor problems, errors in atmospheric corrections or BRDF effect. Thus, many works tried to develop algorithms that could smooth the multitemporal VI profiles in order to improve further classification. The goal of this study is to compare and test different smoothing algorithms in order to select the one which satisfies better to the demand which is classifying crop classes. Those classes correspond to 6 different agricultural managements observed in Mato Grosso through an intensive field work which resulted in mapping more than 1000 individual fields. The agricultural managements above mentioned are based on combination of soy, cotton, corn, millet and sorghum crops sowed in single or double crop systems. Due to the difficulty in separating certain classes because of too similar agricultural calendars, the classification will be reduced to 3 classes : Cotton (single crop), Soy and cotton (double crop), soy (single or double crop with corn, millet or sorghum). The classification will use training data obtained in the 2005-2006 harvest and then be tested on the 2006-2007 harvest. In a first step, four smoothing techniques are presented and criticized. Those techniques are Best Index Slope Extraction (BISE) [3], Mean Value Iteration (MVI) [4], Weighted Least Squares (WLS) [5] and Savitzky-Golay Filter (SG) [6] [7]. These techniques are then implemented and visually compared on a few individual pixels so that it allows doing a first selection between the five studied techniques. The WLS and SG techniques are selected according to criteria proposed by [8]. Those criteria are: ability in eliminating frequent noises, conserving the upper values of the VI profiles and keeping the temporality of the profiles. Those selected algorithms are then programmed and applied to the MODIS/TERRA EVI data (16-days composition periods). Tests of separability are realized based on the Jeffries-Matusita distance in order to see if the algorithms managed in improving the potential of differentiation between the classes. Those tests are realized on the overall profile (comprising 23 MODIS images) as well as on each MODIS sub-period of the profile [1]. This last test is a double interest process because it allows comparing the smoothing techniques and also enables to select a set of images which carries more information on the separability between the classes. Those selected dates can then be used to realize a supervised classification. Here three different classifiers are tested to evaluate if the smoothing techniques as a particular effect on the classification depending on the classifiers used. Those classifiers are Maximum Likelihood classifier, Spectral Angle Mapper (SAM) classifier and CHAID Improved Decision tree. It appears through the separability tests on the overall process that the smoothed profiles don't improve efficiently the potential of discrimination between classes when compared with the original data. However, the same tests realized on the MODIS sub-periods show better results obtained with the smoothed algorithms. The results of the classification confirm this first analyze. The Kappa coefficients are always better with the smoothing techniques and the results obtained with the WLS and SG smoothed profiles are nearly equal. However, the results are different depending on the classifier used. The impact of the smoothing algorithms is much better while using the decision tree model. Indeed, it allows a gain of 0.1 in the Kappa coefficient. While using the Maximum Likelihood end SAM models, the gain remains positive but is much lower (Kappa improved of 0.02 only). Thus, this work's aim is to prove the utility in smoothing the VI profiles in order to improve the final results. However, the choice of the smoothing algorithm has to be made considering the original data used and the classifier models used. In that case the Savitzky-Golay filter gave the better results.
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.
Resumo:
Scorpion stings account for most envenomations by venomous animals in Brazil. A retrospective study (1994-2011) of the clinical consequences of Tityus scorpion stings in 1327 patients treated at a university hospital in Campinas, southeastern Brazil, is reported. The clinical classification, based on outcome, was: dry sting (no envenoming), class I (only local manifestations), class II (systemic manifestations), class III (life-threatening manifestations, such as shock and/or cardiac failure requiring inotropic/vasopressor agents, and/or respiratory failure), and fatal. The median patient age was 27 years (interquartile interval = 15-42 years). Scorpions were brought for identification in 47.2% of cases (Tityus bahiensis 27.7%; Tityus serrulatus 19.5%). Sting severity was classified and each accounted for the following percentage of cases: dry stings - 3.4%, class I - 79.6%, class II - 15.1%, class III - 1.8% and fatal - 0.1%. Pain was the primary local manifestation (95.5%). Systemic manifestations such as vomiting, agitation, sweating, dyspnea, bradycardia, tachycardia, tachypnea, somnolence/lethargy, cutaneous paleness, hypothermia and hypotension were detected in class II or class III + fatal groups, but were significantly more frequent in the latter group. Class III and fatal cases occurred only in children <15 years old, with scorpions being identified in 13/25 cases (T. serrulatus, n = 12; T. bahiensis, n = 1). Laboratory blood abnormalities (hyperglycemia, hypokalemia, leukocytosis, elevations in serum total CK, CK-MB and troponin T, bicarbonate consumption and an increase in base deficit and blood lactate), electrocardiographic changes (ST segment) and echocardiographic alterations (ventricular ejected fraction <54%) were frequently detected in class III patients. Seventeen patients developed pulmonary edema, 16 had cardiac failure and seven had cardiogenic shock. These results indicate that most scorpion stings involved only local manifestations, mainly pain; the greatest severity was associated with stings by T. serrulatus and in children <15 years old.
Resumo:
Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.