886 resultados para Recurrent Neural Networks
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.
Resumo:
This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.
Resumo:
The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.
Resumo:
A neural network was used to map three PID operating regions for a two-input two-output steam generator system. The network was used in stand alone feedforward operation to control the whole operating range of the process, after being trained from the PID controllers corresponding to each control region. The network inputs are the plant error signals, their integral, their derivative and a 4-error delay train.
Resumo:
The main limitation of linearization theory that prevents its application in practical problems is the need for an exact knowledge of the plant. This requirement is eliminated and it is shown that a multilayer network can synthesise the state feedback coefficients that linearize a nonlinear control affine plant. The stability of the linearizing closed loop can be guaranteed if the autonomous plant is asymptotically stable and the state feedback is bounded.