934 resultados para Rectangular microstrip antenna
Resumo:
In this paper, we present an effective excitation of a reelangular dielectric resonator antennas (DRA) with a conductor-hacked coplanar waveguide (CB-CPW). The radiation and resonance characteristics are found to van,, depending on the orientation of the DR on doe coplanar feed line. The effect of finite and infinite ground planes of CB-CPIV on the radiation characteristics of the rectangular DRA is studied. The orientation and position of the DR are optimized for maximum gain and bandwidth. The optimized antenna ,geometry offers --10.46 dBi gain and 7.5% bandwidth with low cross-polar radiation characteristics
Resumo:
The impedance bandwidth of a high permittivity cylindrical dielectric resonator antenna excited by a micro strip line was significantly improved by modifying the feed geometry. The 10 dB return loss bandwidth is enhanced from 12 to 26% without much affecting the gain and other radiation properties of the antenna. Good agreement has been observed between the predicted and measured results
Resumo:
A novel fixed frequency beam scanning microstrip leaky wave antenna is reported. The beam scanning at fixed frequency is achieved by reactive loading. Simulation and measured results shows frequency scanability of 80° as well as fixed frequency beam steering of 68° over the −10 dB impedance band of 4.56–5.06 GHz.
Resumo:
The paper proposes an octagon shaped Microstrip Patch Antenna suitable for dual band applications. The striking features of this compact, planar antenna are sufficient isolation between the two operating bands and an area reduction of - 29% in comparison to a conventional circular patch antenna operating in the same band
Resumo:
The recent boom in wireless communication industry, especially in the area of cellular telephony and wireless data communication, has led to the increased demand for multi band antennas. In such applications the issues to be addressed are, wide bandwidth and gain, while striving for miniature geometry. A dual frequency configuration useful in GSM1800 and Blue tooth, is one that operates with similar properties, both in terms of reflection and radiation characteristics, in the two bands of interest. Dual frequency operations can be realized by exciting the Microstrip Patch Antenna (MPA) using a single feed [1] or dual feed [2]. In this paper, Conformal FDTD[3] method with Perfect Magnetic Conductor (PMC) applied along the plane of symmetry [4] is used to study the characteristics of an Octagonal MPA. The theoretical results are compared against the experimental and IE3D™ simulated results
Resumo:
A dual port dual polarized octagonal microstrip patch antenna suitable for dual band applications is discussed theoretically and experimentally. The antenna exhibits good impedance bandwidth, gain and broad radiation patterns. Parameters predicted by the Conformal Finite Difference Time Domain algorithm show good agreement with the simulated results and experimental observations
Resumo:
Antennas and Propagation, IEEE Transactions on,VOL 48,issue 4,pp 636
Resumo:
A 2-element elliptical patch antenna array with a bi-directional radiation pattern has been developed for ultra wideband indoor wireless communications. The array is constructed by means of feeding two omni-directional elliptical patch elements with a 3-section hybrid power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1 - 6 GHz).
Resumo:
An electromagnetically coupled feed arrangement is proposed for simultaneously exciting multiple concentric ring antennas for multi-frequency operation. This has a multi-layer dielectric configuration in which a transmission line is embedded below the layer containing radiating rings. Energy coupled to these rings from the line beneath is optimised by suitably adjusting the location and dimensions of stubs on the line. It has been shown that the resonant frequencies of these rings do not change as several of these single-frequency antennas are combined to form a multi-resonant antenna. Furthermore, all radiators are forced to operate at their primary mode and some harmonics of the lower resonant frequency rings appearing within the frequency range are suppressed when combined. The experimental prototype antenna has three resonant frequencies at which it has good radiation characteristics.
Resumo:
The design and development of nonresonant edge slot antenna for phased array applications has been presented. The radiating element is a slot cut on the narrow wall of rectangular waveguide (edge slot). The admittance characteristics of the edge slot have been rigorously studied using a novel hybrid method. Nonresonant arrays have been fabricated using the present slot characterization data and the earlier published data. The experimentally measured electrical characteristics of the antenna are presented which clearly brings out the accuracy of the present method.
Resumo:
Microstrip patch antennas are strong candidates for use in many wireless communications applications. This paper proposes the use of a patch antenna with two U-shaped slots to achieve dual band operation. A thick substrate helps broaden the individual bandwidths. The antenna is designed based on extensive IE3D simulation studies. A prototype antenna is fabricated and experimentally verified for the required performance.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.