1000 resultados para Receptor de insulina
Resumo:
1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.
Resumo:
We utilized a mouse model of acute promyelocytic leukemia (APL) to investigate how aberrant activation of cytokine signaling pathways interacts with chimeric transcription factors to generate acute myeloid leukemia. Expression in mice of the APL-associated fusion, PML-RARA, initially has only modest effects on myelopoiesis. Whereas treatment of control animals with interleukin-3 (IL-3) resulted in expanded myelopoiesis without a block in differentiation, PML-RARA abrogated differentiation that normally characterizes the response to IL-3. Retroviral transduction of bone marrow with an IL-3-expressing retrovirus revealed that IL-3 and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) combined to generate a lethal leukemia-like syndrome in
Resumo:
The immunophilin cochaperones, cyclophilin 40 (CyP40), FKBP51 and FKBP52 and PP5, a serine/threonine protein phosphatase, have been implicated as modulators of steroid receptor function through their association with Hsp90, a molecular chaperone with a key role in steroid hormone signalling. Although progress towards a satisfying definition for the role of these components in steroid receptor complexes has been slow, recent developments arising from novel approaches in both yeast and mammalian systems, together with available crystal structures for Hsp90 and some of these cochaperones, are beginning to provide important clues about their function. Hsp90, recently identified as a member of the GHKL superfamily of ATPases, is the central player in receptor assembly, an energy-driven process that allows receptor and the immunophilins to be proximally located, or to interact directly, on a Hsp90 scaffold. Immunophilin structure, relative abundance, their binding affinity for Hsp90 and their ability to interact with specific receptors may all contribute to a selective preference of the immunophilins for individual receptors. Association of receptors with different immunophilins leads to differential functional consequences for receptor activity. Observations of glucocorticoid resistance in New World primates, attributed to FKBP51 overexpression and incorporation into glucocorticoid receptor complexes, have provided the first evidence that these cochaperones can control hormone-binding affinity. Application of a yeast model to FKBP52 function in the glucocorticoid receptor system has now provided crucial evidence that this immunophilin enhances receptor transcriptional activity by increasing receptor avidity for hormone through PPIase-mediated conformational changes in the ligand-binding domain. A recent novel finding suggests that hormone binding may induce a functional exchange of immunophilins in receptor complexes and that the modified complex directs receptor to the nucleus.
Resumo:
We are interested in determining whether low maternal vitamin D-3 affects brain development in utero. Whilst the vitamin D receptor (VDR) has been identified in embryonic rat brains, the timing and magnitude of its expression across the brain remains unclear. In this study we have quantitated VDR expression during development as well correlated the timing of its appearance with two vital developmental events, apoptosis and mitosis. Brains from embryonic rats (embryonic days 15-23) were examined. We show that the well-described increase in apoptotic cells and decrease in mitotic cells during development correlates with the appearance of the VDR in brain tissue. Given that vitamin D-3 regulates mitosis and apoptosis in non-neuronal tissue we speculate that the timing of VDR expression in embryonic brain may directly or indirectly mediate features of neuronal apoptosis and mitosis.
Resumo:
Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.
Resumo:
The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
No abstract
Resumo:
No abstract
Resumo:
KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper I immune response against Leishmania major infection. in this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM(+)) and its recombinant counterpart (rKM(+)) in experimental paracoccidioidomycosis. To this end, jfKM(+) or rKM(+) was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-gamma, and tumor necrosis factor-a, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule.
Resumo:
Excitation of the mesocorticolimbic pathway, originating from dopaminergic neurons in the ventral tegmental area (VTA), may be important for the development of exaggerated fear responding. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. The functional role of the dopaminergic pathway connecting the VIA to the basolateral amygdala (BLA) in fear and anxiety has received little attention. In vivo microdialysis was performed to measure dopamine levels in the BLA of Wistar rats that received the dopamine D(2) agonist quinpirole (1 mu g/0.2 mu l) into the VTA and were subjected to a fear conditioning test using a light as the conditioned stimulus (CS). The effects of intra-BLA injections of the D(1) antagonist SCH 23390 (1 and 2 mu g/0.2 mu l) and D(2) antagonist sulpiride (1 and 2 mu g/0.2 mu l) on fear-potentiated startle (FPS) to a light-CS were also assessed. Locomotor performance was evaluated by use of open-field and rotarod tests. Freezing and increased dopamine levels in the BLA in response to the CS were both inhibited by intra-VTA quinpirole. Whereas intra-BLA SCH 23390 did not affect FPS, intra-BLA sulpiride (2 mu g) inhibited FPS. Sulpiride`s ability to decrease FPS cannot be attributed to nonspecific effects because this drug did not affect motor performance. These findings indicate that the dopamine D(2) receptor pathway connecting the ventral tegmental area and the basolateral amygdala modulates fear and anxiety and may be a novel pharmacological target for the treatment of anxiety. (C) 2010 Elsevier Inc. All rights reserved.