979 resultados para Rapid Design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic membrane proteins cannot be produced in a reliable manner for structural analysis. Consequently, researchers still rely on trial-and-error approaches, which most often yield insufficient amounts. This means that membrane protein production is recognized by biologists as the primary bottleneck in contemporary structural genomics programs. Here, we describe a study to examine the reasons for successes and failures in recombinant membrane protein production in yeast, at the level of the host cell, by systematically quantifying cultures in high-performance bioreactors under tightlydefined growth regimes. Our data show that the most rapid growth conditions of those chosen are not the optimal production conditions. Furthermore, the growth phase at which the cells are harvested is critical: We show that it is crucial to grow cells under tightly-controlled conditions and to harvest them prior to glucose exhaustion, just before the diauxic shift. The differences in membrane protein yields that we observe under different culture conditions are not reflected in corresponding changes in mRNA levels of FPS1, but rather can be related to the differential expression of genes involved in membrane protein secretion and yeast cellular physiology. Copyright © 2005 The Protein Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the problem of Information Systems design for Corporate Management. It shows that the results of applying current approaches to Management Information Systems and Corporate Modelling fully justify a fresh look to the problem. The thesis develops an approach to design based on Cybernetic principles and theories. It looks at Management as an informational process and discusses the relevance of regulation theory to its practice. The work proceeds around the concept of change and its effects on the organization's stability and survival. The idea of looking at organizations as viable systems is discussed and a design to enhance survival capacity is developed. It takes Ashby's theory of adaptation and developments on ultra-stability as a theoretical framework and considering conditions for learning and foresight deduces that a design should include three basic components: A dynamic model of the organization- environment relationships; a method to spot significant changes in the value of the essential variables and in a certain set of parameters; and a Controller able to conceive and change the other two elements and to make choices among alternative policies. Further considerations of the conditions for rapid adaptation in organisms composed of many parts, and the law of Requisite Variety determine that successful adaptive behaviour requires certain functional organization. Beer's model of viable organizations is put in relation to Ashby's theory of adaptation and regulation. The use of the Ultra-stable system as abstract unit of analysis permits developing a rigorous taxonomy of change; it starts distinguishing between change with in behaviour and change of behaviour to complete the classification with organizational change. It relates these changes to the logical categories of learning connecting the topic of Information System design with that of organizational learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progressive addition spectacle lenses (PALs) have now become the method of choice for many presbyopic individuals to alleviate the visual problems of middle-age. Such lenses are difficult to assess and characterise because of their lack of discrete geographical locators of their key features. A review of the literature (mostly patents) describing the different designs of these lenses indicates the range of approaches to solving the visual problem of presbyopia. However, very little is published about the comparative optical performance of these lenses. A method is described here based on interferometry for the assessment of PALs, with a comparison of measurements made on an automatic focimeter. The relative merits of these techniques are discussed. Although the measurements are comparable, it is considered that the interferometry method is more readily automated, and would be ultimately capable of producing a more rapid result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, mobile technology has been one of the major growth areas in computing. Designing the user interface for mobile applications, however, is a very complex undertaking which is made even more challenging by the rapid technological developments in mobile hardware. Mobile human-computer interaction, unlike desktop-based interaction, must be cognizant of a variety of complex contextual factors affecting both users and technology. The Handbook of Research on User Interface Design and Evaluation provides students, researchers, educators, and practitioners with a compendium of research on the key issues surrounding the design and evaluation of mobile user interfaces, such as the physical environment and social context in which a mobile device is being used and the impact of multitasking behavior typically exhibited by mobile-device users. Compiling the expertise of over 150 leading experts from 26 countries, this exemplary reference tool will make an indispensable addition to every library collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine the accuracy, acceptability and cost-effectiveness of polymerase chain reaction (PCR) and optical immunoassay (OIA) rapid tests for maternal group B streptococcal (GBS) colonisation at labour. DESIGN: A test accuracy study was used to determine the accuracy of rapid tests for GBS colonisation of women in labour. Acceptability of testing to participants was evaluated through a questionnaire administered after delivery, and acceptability to staff through focus groups. A decision-analytic model was constructed to assess the cost-effectiveness of various screening strategies. SETTING: Two large obstetric units in the UK. PARTICIPANTS: Women booked for delivery at the participating units other than those electing for a Caesarean delivery. INTERVENTIONS: Vaginal and rectal swabs were obtained at the onset of labour and the results of vaginal and rectal PCR and OIA (index) tests were compared with the reference standard of enriched culture of combined vaginal and rectal swabs. MAIN OUTCOME MEASURES: The accuracy of the index tests, the relative accuracies of tests on vaginal and rectal swabs and whether test accuracy varied according to the presence or absence of maternal risk factors. RESULTS: PCR was significantly more accurate than OIA for the detection of maternal GBS colonisation. Combined vaginal or rectal swab index tests were more sensitive than either test considered individually [combined swab sensitivity for PCR 84% (95% CI 79-88%); vaginal swab 58% (52-64%); rectal swab 71% (66-76%)]. The highest sensitivity for PCR came at the cost of lower specificity [combined specificity 87% (95% CI 85-89%); vaginal swab 92% (90-94%); rectal swab 92% (90-93%)]. The sensitivity and specificity of rapid tests varied according to the presence or absence of maternal risk factors, but not consistently. PCR results were determinants of neonatal GBS colonisation, but maternal risk factors were not. Overall levels of acceptability for rapid testing amongst participants were high. Vaginal swabs were more acceptable than rectal swabs. South Asian women were least likely to have participated in the study and were less happy with the sampling procedure and with the prospect of rapid testing as part of routine care. Midwives were generally positive towards rapid testing but had concerns that it might lead to overtreatment and unnecessary interference in births. Modelling analysis revealed that the most cost-effective strategy was to provide routine intravenous antibiotic prophylaxis (IAP) to all women without screening. Removing this strategy, which is unlikely to be acceptable to most women and midwives, resulted in screening, based on a culture test at 35-37 weeks' gestation, with the provision of antibiotics to all women who screened positive being most cost-effective, assuming that all women in premature labour would receive IAP. The results were sensitive to very small increases in costs and changes in other assumptions. Screening using a rapid test was not cost-effective based on its current sensitivity, specificity and cost. CONCLUSIONS: Neither rapid test was sufficiently accurate to recommend it for routine use in clinical practice. IAP directed by screening with enriched culture at 35-37 weeks' gestation is likely to be the most acceptable cost-effective strategy, although it is premature to suggest the implementation of this strategy at present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international economic and business environment continues to develop at a rapid rate. Increasing interactions between economies, particularly between Europe and Asia, has raised many important issues regarding transport infrastructure, logistics and broader supply chain management. The potential exists to further stimulate trade provided that these issues are addressed in a logical and systematic manner. However, if this potential is to be realised in practice there is a need to re-evaluate current supply chain configurations. A mismatch currently exists between the technological capability and the supply chain or logistical reality. This mismatch has sharpened the focus on the need for robust approaches to supply chain re-engineering. Traditional approaches to business re-engineering have been based on manufacturing systems engineering and business process management. A recognition that all companies exist as part of bigger supply chains has fundamentally changed the focus of re-engineering. Inefficiencies anywhere in a supply chain result in the chain as a whole being unable to reach its true competitive potential. This reality, combined with the potentially radical impact on business and supply chain architectures of the technologies associated with electronic business, requires organisations to adopt innovative approaches to supply chain analysis and re-design. This paper introduces a systems approach to supply chain re-engineering which is aimed at addressing the challenges which the evolving business environment brings with it. The approach, which is based on work with a variety of both conventional and electronic supply chains, comprises underpinning principles, a methodology and guidelines on good working practice, as well as a suite of tools and techniques. The adoption of approaches such as that outlined in this paper helps to ensure that robust supply chains are designed and implemented in practice. This facilitates an integrated approach, with involvement of all key stakeholders throughout the design process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.