920 resultados para Random walks
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0⩽trandom collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where fsi(·)'s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali–Sidney scheme is a special case of this general construction. We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
This study analyses and compares the cost efficiency of Japanese steam power generation companies using the fixed and random Bayesian frontier models. We show that it is essential to account for heterogeneity in modelling the performance of energy companies. Results from the model estimation also indicate that restricting CO2 emissions can lead to a decrease in total cost. The study finally discusses the efficiency variations between the energy companies under analysis, and elaborates on the managerial and policy implications of the results.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
Public acceptance is consistently listed as having an enormous impact on the implementation and success of a congestion charge scheme. This paper investigates public acceptance of such a scheme in Australia. Surveys were conducted in Brisbane and Melbourne, the two fastest growing Australian cities. Using an ordered logit modeling approach, the survey data including stated preferences were analyzed to pinpoint the important factors influencing people’s attitudes to a congestion charge and, in turn, to their transport mode choices. To accommodate the nature of, and to account for the resulting heterogeneity of the panel data, random effects were considered in the models. As expected, this study found that the amount of the congestion charge and the financial benefits of implementing it have a significant influence on respondents’ support for the charge and on the likelihood of their taking a bus to city areas. However, respondents’ current primary transport mode for travelling to the city areas has a more pronounced impact. Meanwhile, respondents’ perceptions of the congestion charge’s role in protecting the environment by reducing vehicle emissions, and of the extent to which the charge would mean that they travelled less frequently to the city for shopping or entertainment, also have a significant impact on their level of support for its implementation. We also found and explained notable differences across two cities. Finally, findings from this study have been fully discussed in relation to the literature.
Resumo:
Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.
Resumo:
With the overwhelming increase in the amount of data on the web and data bases, many text mining techniques have been proposed for mining useful patterns in text documents. Extracting closed sequential patterns using the Pattern Taxonomy Model (PTM) is one of the pruning methods to remove noisy, inconsistent, and redundant patterns. However, PTM model treats each extracted pattern as whole without considering included terms, which could affect the quality of extracted patterns. This paper propose an innovative and effective method that extends the random set to accurately weigh patterns based on their distribution in the documents and their terms distribution in patterns. Then, the proposed approach will find the specific closed sequential patterns (SCSP) based on the new calculated weight. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms other state-of-the-art methods in different popular measures.
Resumo:
Background Random Breath Testing (RBT) has proven to be a cornerstone of enforcement attempts to deter (as well as apprehend) motorists from drink driving in Queensland (Australia) for decades. However, scant published research has examined the relationship between the frequency of implementing RBT activities and subsequent drink driving apprehension rates across time. Aim This study aimed to examine the prevalence of apprehending drink drivers in Queensland over a 12 year period. It was hypothesised that an increase in breath testing rates would result in a corresponding decrease in the frequency of drink driving apprehension rates over time, which would reflect general deterrent effects. Method The Queensland Police Service provided RBT data that was analysed. Results Between the 1st of January 2000 and 31st of December 2011, 35,082,386 random breath tests (both mobile and stationary) were conducted in Queensland, resulting in 248,173 individuals being apprehended for drink driving offences. A total of 342,801 offences were recorded during this period, representing an intercept rate of .96. Of these offences, 276,711 (80.72%) were recorded against males and 66,024 (19.28%) offences committed by females. The most common drink driving offence was between 0.05 and 0.08 BAC limit. The largest proportion of offences was detected on the weekends, with Saturdays (27.60%) proving to be the most common drink driving night followed by Sundays (21.41%). The prevalence of drink driving detection rates rose steadily across time, peaking in 2008 and 2009, before slightly declining. This decline was observed across all Queensland regions and any increase in annual figures was due to new offence types being developed. Discussion This paper will further outline the major findings of the study in regards to tailoring RBT operations to increase detection rates as well as improve the general deterrent effect of the initiative.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.