914 resultados para Random regression
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.
Resumo:
BACKGROUND: The aim of this study was to determine the performance of a new, 3D-monitor based, objective stereotest in children under the age of four. METHODS: Random-dot circles (diameter 10 cm, crossed, disparity of 0.34 degrees) randomly changing their position were presented on an 3D-monitor while eye movements were monitored by infrared photo-oculography. If > or = 3 consecutive stimuli were seen, a positive response was assumed. One hundred thirty-four normal children aged 2 months to 4 years (average 17+/-15.3 months) were examined. RESULTS: Below the age of 12 months, we were not able to obtain a response to the 3D stimulus. For older children the following rates of positive responses were found: 12-18 months 25%, 18-24 months 10%, 24-30 months 16%, 30-36 months 57%, 36-42 months 100%, and 42-48 months 91%. Multiple linear logistic regression showed a significant influence on stimulus recognition of the explanatory variables age (p<0.00001) and child cooperation (p<0.001), but not of gender (p>0.1). CONCLUSIONS: This 3D-monitor based stereotest allows an objective measurement of random-dot stereopsis in younger children. It might open new ways to screen children for visual abnormalities and to study the development of stereovision. However, the current experimental setting does not allow determining random-dot stereopsis in children younger than 12 months.
Resumo:
This study aimed to identify the microbial contamination of water from dental chair units (DCUs) using the prevalence of Pseudomonas aeruginosa, Legionella species and heterotrophic bacteria as a marker of pollution in water in the area of St. Gallen, Switzerland. Water (250 ml) from 76 DCUs was collected twice (early on a morning before using all the instruments and after using the DCUs for at least two hours) either from the high-speed handpiece tube, the 3 in 1 syringe or the micromotor for water quality testing. An increased bacterial count (>300 CFU/ml) was found in 46 (61%) samples taken before use of the DCU, but only in 29 (38%) samples taken two hours after use. Pseudomonas aeruginosa was found in both water samples in 6/76 (8%) of the DCUs. Legionella were found in both samples in 15 (20%) of the DCUs tested. Legionella anisa was identified in seven samples and Legionella pneumophila was found in eight. DCUs which were less than five years old were contaminated less often than older units (25% und 77%, p<0.001). This difference remained significant (0=0.0004) when adjusted for manufacturer and sampling location in a multivariable logistic regression. A large proportion of the DCUs tested did not comply with the Swiss drinking water standards nor with the recommendations of the American Centers for Disease Control and Prevention (CDC).
Resumo:
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.
Resumo:
Let Y_i = f(x_i) + E_i\ (1\le i\le n) with given covariates x_1\lt x_2\lt \cdots\lt x_n , an unknown regression function f and independent random errors E_i with median zero. It is shown how to apply several linear rank test statistics simultaneously in order to test monotonicity of f in various regions and to identify its local extrema.
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^
Resumo:
Gastroesophageal reflux disease is a common condition affecting 25 to 40% of the population and causes significant morbidity in the U.S., accounting for at least 9 million office visits to physicians with estimated annual costs of $10 billion. Previous research has not clearly established whether infection with Helicobacter pylori, a known cause of peptic ulcer, atrophic gastritis and non cardia adenocarcinoma of the stomach, is associated with gastroesophageal reflux disease. This study is a secondary analysis of data collected in a cross-sectional study of a random sample of adult residents of Ciudad Juarez, Mexico, that was conducted in 2004 (Prevalence and Determinants of Chronic Atrophic Gastritis Study or CAG study, Dr. Victor M. Cardenas, Principal Investigator). In this study, the presence of gastroesophageal reflux disease was based on responses to the previously validated Spanish Language Dyspepsia Questionnaire. Responses to this questionnaire indicating the presence of gastroesophageal reflux symptoms and disease were compared with the presence of H. pylori infection as measured by culture, histology and rapid urease test, and with findings of upper endoscopy (i.e., hiatus hernia and erosive and atrophic esophagitis). The prevalence ratio was calculated using bivariate, stratified and multivariate negative binomial logistic regression analyses in order to assess the relation between active H. pylori infection and the prevalence of gastroesophageal reflux typical syndrome and disease, while controlling for known risk factors of gastroesophageal reflux disease such as obesity. In a random sample of 174 adults 48 (27.6%) of the study participants had typical reflux syndrome and only 5% (or 9/174) had gastroesophageal reflux disease per se according to the Montreal consensus, which defines reflux syndromes and disease based on whether the symptoms are perceived as troublesome by the subject. There was no association between H. pylori infection and typical reflux syndrome or gastroesophageal reflux disease. However, we found that in this Northern Mexican population, there was a moderate association (Prevalence Ratio=2.5; 95% CI=1.3, 4.7) between obesity (≥30 kg/m2) and typical reflux syndrome. Management and prevention of obesity will significantly curb the growing numbers of persons affected by gastroesophageal reflux symptoms and disease in Northern Mexico. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^
Resumo:
Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^
Resumo:
The purposes of this study were (1) to validate of the item-attribute matrix using two levels of attributes (Level 1 attributes and Level 2 sub-attributes), and (2) through retrofitting the diagnostic models to the mathematics test of the Trends in International Mathematics and Science Study (TIMSS), to evaluate the construct validity of TIMSS mathematics assessment by comparing the results of two assessment booklets. Item data were extracted from Booklets 2 and 3 for the 8th grade in TIMSS 2007, which included a total of 49 mathematics items and every student's response to every item. The study developed three categories of attributes at two levels: content, cognitive process (TIMSS or new), and comprehensive cognitive process (or IT) based on the TIMSS assessment framework, cognitive procedures, and item type. At level one, there were 4 content attributes (number, algebra, geometry, and data and chance), 3 TIMSS process attributes (knowing, applying, and reasoning), and 4 new process attributes (identifying, computing, judging, and reasoning). At level two, the level 1 attributes were further divided into 32 sub-attributes. There was only one level of IT attributes (multiple steps/responses, complexity, and constructed-response). Twelve Q-matrices (4 originally specified, 4 random, and 4 revised) were investigated with eleven Q-matrix models (QM1 ~ QM11) using multiple regression and the least squares distance method (LSDM). Comprehensive analyses indicated that the proposed Q-matrices explained most of the variance in item difficulty (i.e., 64% to 81%). The cognitive process attributes contributed to the item difficulties more than the content attributes, and the IT attributes contributed much more than both the content and process attributes. The new retrofitted process attributes explained the items better than the TIMSS process attributes. Results generated from the level 1 attributes and the level 2 attributes were consistent. Most attributes could be used to recover students' performance, but some attributes' probabilities showed unreasonable patterns. The analysis approaches could not demonstrate if the same construct validity was supported across booklets. The proposed attributes and Q-matrices explained the items of Booklet 2 better than the items of Booklet 3. The specified Q-matrices explained the items better than the random Q-matrices.
Resumo:
The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.