973 resultados para Random Access
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Added t.-p., illus.
Resumo:
NAVELEX final technical report, December 1978.
Resumo:
"NsG 24-59. Sponsored by National Aeronautics and Space Administration."
Resumo:
Mode of access: Internet.
Resumo:
Caption title: The adventures of Roderick Random.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
This dissertation explores the complex interactions between organizational structure and the environment. In Chapter 1, I investigate the effect of financial development on the formation of European corporate groups. Since cross-country regressions are hard to interpret in a causal sense, we exploit exogenous industry measures to investigate a specific channel through which financial development may affect group affiliation: internal capital markets. Using a comprehensive firm-level dataset on European corporate groups in 15 countries, we find that countries
with less developed financial markets have a higher percentage of group affiliates in more capital intensive industries. This relationship is more pronounced for young and small firms and for affiliates of large and diversified groups. Our findings are consistent with the view that internal capital markets may, under some conditions, be more efficient than prevailing external markets, and that this may drive group affiliation even in developed economies. In Chapter 2, I bridge current streams of innovation research to explore the interplay between R&D, external knowledge, and organizational structure–three elements of a firm’s innovation strategy which we argue should logically be studied together. Using within-firm patent assignment patterns,
we develop a novel measure of structure for a large sample of American firms. We find that centralized firms invest more in research and patent more per R&D dollar than decentralized firms. Both types access technology via mergers and acquisitions, but their acquisitions differ in terms of frequency, size, and i\ntegration. Consistent with our framework, their sources of value creation differ: while centralized firms derive more value from internal R&D, decentralized firms rely more on external knowledge. We discuss how these findings should stimulate more integrative work on theories of innovation. In Chapter 3, I use novel data on 1,265 newly-public firms to show that innovative firms exposed to environments with lower M&A activity just after their initial public offering (IPO) adapt by engaging in fewer technological acquisitions and
more internal research. However, this adaptive response becomes inertial shortly after IPO and persists well into maturity. This study advances our understanding of how the environment shapes heterogeneity and capabilities through its impact on firm structure. I discuss how my results can help bridge inertial versus adaptive perspectives in the study of organizations, by
documenting an instance when the two interact.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.