911 resultados para Railway buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridges are currently rated individually for maintenance and repair action according to the structural conditions of their elements. Dealing with thousands of bridges and the many factors that cause deterioration, makes this rating process extremely complicated. The current simplified but practical methods are not accurate enough. On the other hand, the sophisticated, more accurate methods are only used for a single or particular bridge type. It is therefore necessary to develop a practical and accurate rating system for a network of bridges. The first most important step in achieving this aim is to classify bridges based on the differences in nature and the unique characteristics of the critical factors and the relationship between them, for a network of bridges. Critical factors and vulnerable elements will be identified and placed in different categories. This classification method will be used to develop a new practical rating method for a network of railway bridges based on criticality and vulnerability analysis. This rating system will be more accurate and economical as well as improve the safety and serviceability of railway bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc will reduce the remaining life of bridges. Bridges are currently rated individually for maintenance and repair actions according to the structural conditions of their elements. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical rating methods are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system which will be capable of rating a network of railway bridges. This paper introduces a new method for rating a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this research is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc. will reduce the remaining life of bridges. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical methods of rating a network of bridges are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system, which will be capable of rating a network of railway bridges. This article introduces a new method to rate a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this article is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation among them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evolution in the use of digital modelling has occurred in the Queensland Department of Public Works Division of Project Services over the last 20 years from: the initial implementation of computer aided design and documentation (CADD); to experimentation with building information modelling (BIM); to embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) including the active involvement of consultants and contractors in the design/delivery process. This case study is one of three undertaken through the Australian Sustainable Built Environment National Research Centre investigating past R&D investment. The intent of these cases is to inform the development of policy guidelines for future investment in the construction industry in Australia. This research is informing the activities of CIB Task Group 85 R&D Investment and Impact. The uptake of digital modelling by Project Services has been approached through an incremental learning approach. This has been driven by a strong and clear vision with a focus on developing more efficient delivery mechanisms through the use of new technology coupled with process change. Findings reveal an organisational focus on several areas including: (i) strategic decision making including the empowerment of innovation leaders and champions; (ii) the acquisition and exploitation of knowledge; (iii) product and process development (with a focus on efficiency and productivity); (iv) organisational learning; (v) maximising the use of technology; and (vi) supply chain integration. Key elements of this approach include pilot projects, researcher engagement, industry partnerships and leadership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is expected to increase earth’s temperatures and consequently result in more frequent extreme weather events such as cyclones, storms, droughts and floods and rising global sea levels. This phenomenon will affect all assets. This paper discusses the impact of climate change and its consequences on public buildings. Public building management encompasses the building life cycle from planning, procurement, operation, repair and maintenance and building disposal. This paper recommends climate change adaptation strategies to be integrated into public building management. The roles and responsibilities of asset managers and users are discussed within the framework of planning and implementation of public building management and the integration of climate change adaptation strategies. A key point is that climate change can induce premature obsolescence of public buildings and services, which will increase the maintenance and refurbishment costs. This in turn will affect the life cycle cost of the building. Furthermore, a business continuity plan is essential for public building management in the context of disasters. The paper also highlights the significant role that the occupants of public buildings can play in the development and implementation of climate change adaptation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern trains with different axle configurations, speeds and loads are used in railway networks. As a result, one of the most important questions of the mangers involved in bridge managements systems (BMS) is how these changes affect the structural behavior of the critical components of the railway bridges. Although researchers have conducted, many investigations on the dynamic effects of the moving loads on bridges, the influence of the changes in the speed of the train on the demand by capacity ratios of the different critical components of the bridge have not yet been properly studied. This study is important, because different components with different capacities and roles for carrying loads in the structure may be affected differently. To investigate the above phenomenon in this research, a structural model of a simply supported bridge is developed. It will be verified that the dynamic behavior of this bridge is similar to a group of railway bridges in Australia. Demand by capacity ratios of the critical components of the bridge, when it is subjected to a train load with different speeds will be calculated. The results show that the effect of increase or decrease of speed should not be underestimated. The outcome is very significant as it is contrary to what is currently expected, i.e. by reducing the speed of the train, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collisions between pedestrians and vehicles continue to be a major problem throughout the world. Pedestrians trying to cross roads and railway tracks without any caution are often highly susceptible to collisions with vehicles and trains. Continuous financial, human and other losses have prompted transport related organizations to come up with various solutions addressing this issue. However, the quest for new and significant improvements in this area is still ongoing. This work addresses this issue by building a general framework using computer vision techniques to automatically monitor pedestrian movements in such high-risk areas to enable better analysis of activity, and the creation of future alerting strategies. As a result of rapid development in the electronics and semi-conductor industry there is extensive deployment of CCTV cameras in public places to capture video footage. This footage can then be used to analyse crowd activities in those particular places. This work seeks to identify the abnormal behaviour of individuals in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM), Full-2D HMM and Spatial HMM to model the normal activities of people. The outliers of the model (i.e. those observations with insufficient likelihood) are identified as abnormal activities. Location features, flow features and optical flow textures are used as the features for the model. The proposed approaches are evaluated using the publicly available UCSD datasets, and we demonstrate improved performance using a Semi-2D Hidden Markov Model compared to other state of the art methods. Further we illustrate how our proposed methods can be applied to detect anomalous events at rail level crossings.