987 resultados para Railroad stations
Resumo:
The chemical industry has to face safety problems linked to the hazards of chemicals and the risks posed by the plants where they are handled. However, their transport may cause significant risk values too: it’s not totally possible to avoid the occurrence of accidents. This work is focused on the emergency response to railway accidents involving hazardous materials, that is what has to be done once they happen to limit their consequences. A first effort has been devoted to understand the role given to this theme within legislations: it has been found out that often it’s not even taken into account. Exceptionally a few countries adopt guidelines suggesting how to plan the response, who is appointed to intervene and which actions should be taken first. An investigation has been made to define the tools available for the responders, with attention on the availability of chemical-specific safety distances. It has emerged that the ERG book adopted by some American countries has suggestions and the Belgian legislation too establishes criteria to evaluate these distances. An analysis has been conducted then on the most recent accidents occurred worldwide, to understand how the response was performed and which safety distances were adopted. These values were compared with the numbers reported by the ERG book and the results of two devoted software tools for consequence analysis of accidental spills scenarios. This comparison has shown that there are differences between them and that a more standardized approach is necessary. This is why further developments of the topic should focus on promoting uniform procedures for emergency response planning and on a worldwide adoption of a guidebook with suggestions about actions to reduce consequences and about safety distances, determined following finer researches. For this aim, the development of a detailed database of hazardous materials transportation accidents could be useful.
Resumo:
The increasing deployment of mobile communication base stations led to an increasing demand for epidemiological studies on possible health effects of radio frequency emissions. The methodological challenges of such studies have been critically evaluated by a panel of scientists in the fields of radiofrequency engineering/dosimetry and epidemiology. Strengths and weaknesses of previous studies have been identified. Dosimetric concepts and crucial aspects in exposure assessment were evaluated in terms of epidemiological studies on different types of outcomes. We conclude that in principle base station epidemiological studies are feasible. However, the exposure contributions from all relevant radio frequency sources have to be taken into account. The applied exposure assessment method should be piloted and validated. Short to medium term effects on physiology or health related quality of life are best investigated by cohort studies. For long term effects, groups with a potential for high exposure need to first be identified; for immediate effect, human laboratory studies are the preferred approach.
Resumo:
Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.
Resumo:
The Michigan Department of Transportation is evaluating upgrading their portion of the Wolverine Line between Chicago and Detroit to accommodate high speed rail. This will entail upgrading the track to allow trains to run at speeds in excess of 110 miles per hour (mph). An important component of this upgrade will be to assess the requirement for ballast material for high speed rail. In the event that the existing ballast materials do not meet specifications for higher speed train, additional ballast will be required. The purpose of this study, therefore, is to investigate the current MDOT railroad ballast quality specifications and compare them to both the national and international specifications for use on high speed rail lines. The study found that while MDOT has quality specifications for railroad ballast it does not have any for high speed rail. In addition, the American Railway Engineering and Maintenance-of-Way Association (AREMA), while also having specifications for railroad ballast, does not have specific specifications for high speed rail lines. The AREMA aggregate specifications for ballast include the following tests: (1) LA Abrasion, (2) Percent Moisture Absorption, (3) Flat and Elongated Particles, (4) Sulfate Soundness test. Internationally, some countries do require a highly standard for high speed rail such as the Los Angeles (LA) Abrasion test, which is uses a higher standard performance and the Micro Duval test, which is used to determine the maximum speed that a high speed can operate at. Since there are no existing MDOT ballast specification for high speed rail, it is assumed that aggregate ballast specifications for the Wolverine Line will use the higher international specifications. The Wolverine line, however, is located in southern Michigan is a region of sedimentary rocks which generally do not meet the existing MDOT ballast specifications. The investigation found that there were only 12 quarries in the Michigan that meet the MDOT specification. Of these 12 quarries, six were igneous or metamorphic rock quarries, while six were carbonate quarries. Of the six carbonate quarries four were locate in the Lower Peninsula and two in the Upper Peninsula. Two of the carbonate quarries were located in near proximity to the Wolverine Line, while the remaining quarries were at a significant haulage distance. In either case, the cost of haulage becomes an important consideration. In this regard, four of the quarries were located with lake terminals allowing water transportation to down state ports. The Upper Peninsula also has a significant amount of metal based mining in both igneous and metamorphic rock that generate significant amount of waste rock that could be used as a ballast material. The main drawback, however, is the distance to the Wolverine rail line. One potential source is the Cliffs Natural Resources that operates two large surface mines in the Marquette area with rail and water transportation to both Lake Superior and Lake Michigan. Both mines mine rock with a very high compressive strength far in excess of most ballast materials used in the United States and would make an excellent ballast materials. Discussions with Cliffs, however, indicated that due to environmental concerns that they would most likely not be interested in producing a ballast material. In the United States carbonate aggregates, while used for ballast, many times don't meet the ballast specifications in addition to the problem of particle degradation that can lead to fouling and cementation issues. Thus, many carbonate aggregate quarries in close proximity to railroads are not used. Since Michigan has a significant amount of carbonate quarries, the research also investigated using the dynamic properties of aggregate as a possible additional test for aggregate ballast quality. The dynamic strength of a material can be assessed using a split Hopkinson Pressure Bar (SHPB). The SHPB has been traditionally used to assess the dynamic properties of metal but over the past 20 years it is now being used to assess the dynamic properties of brittle materials such as ceramics and rock. In addition, the wear properties of metals have been related to their dynamic properties. Wear or breakdown of railroad ballast materials is one of the main problems with ballast material due to the dynamic loading generated by trains and which will be significantly higher for high speed rails. Previous research has indicated that the Port Inland quarry along Lake Michigan in the Southern Upper Peninsula has significant dynamic properties that might make it potentially useable as an aggregate for high speed rail. The dynamic strength testing conducted in this research indicate that the Port Inland limestone in fact has a dynamic strength close to igneous rocks and much higher than other carbonate rocks in the Great Lakes region. It is recommended that further research be conducted to investigate the Port Inland limestone as a high speed ballast material.
Resumo:
http://digitalcommons.mtu.edu/copper_range/1000/thumbnail.jpg
Resumo:
Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).
Resumo:
Two of the indicators of the UN Millennium Development Goals ensuring environmental sustainability are energy use and per capita carbon dioxide emissions. The increasing urbanization and increasing world population may require increased energy use in order to transport enough safe drinking water to communities. In addition, the increase in water use would result in increased energy consumption, thereby resulting in increased green-house gas emissions that promote global climate change. The study of multiple Municipal Drinking Water Distribution Systems (MDWDSs) that relates various MDWDS aspects--system components and properties--to energy use is strongly desirable. The understanding of the relationship between system aspects and energy use aids in energy-efficient design. In this study, components of a MDWDS, and/or the characteristics associated with the component are termed as MDWDS aspects (hereafter--system aspects). There are many aspects of MDWDSs that affect the energy usage. Three system aspects (1) system-wide water demand, (2) storage tank parameters, and (3) pumping stations were analyzed in this study. The study involved seven MDWDSs to understand the relationship between the above-mentioned system aspects in relation with energy use. A MDWDSs model, EPANET 2.0, was utilized to analyze the seven systems. Six of the systems were real and one was a hypothetical system. The study presented here is unique in its statistical approach using seven municipal water distribution systems. The first system aspect studied was system-wide water demand. The analysis involved analyzing seven systems for the variation of water demand and its impact on energy use. To quantify the effects of water use reduction on energy use in a municipal water distribution system, the seven systems were modeled and the energy usage quantified for various amounts of water conservation. It was found that the effect of water conservation on energy use was linear for all seven systems and that all the average values of all the systems' energy use plotted on the same line with a high R 2 value. From this relationship, it can be ascertained that a 20% reduction in water demand results in approximately a 13% savings in energy use for all seven systems analyzed. This figure might hold true for many similar systems that are dominated by pumping and not gravity driven. The second system aspect analyzed was storage tank(s) parameters. Various tank parameters: (1) tank maximum water levels, (2) tank elevation, and (3) tank diameter were considered in this part of the study. MDWDSs use a significant amount of electrical energy for the pumping of water from low elevations (usually a source) to higher ones (usually storage tanks). The use of electrical energy has an effect on pollution emissions and, therefore, potential global climate change as well. Various values of these tank parameters were modeled on seven MDWDSs of various sizes using a network solver and the energy usage recorded. It was found that when averaged over all seven analyzed systems (1) the reduction of maximum tank water level by 50% results in a 2% energy reduction, (2) energy use for a change in tank elevation is system specific, and (2) a reduction of tank diameter of 50% results in approximately a 7% energy savings. The third system aspect analyzed in this study was pumping station parameters. A pumping station consists of one or more pumps. The seven systems were analyzed to understand the effect of the variation of pump horsepower and the number of booster stations on energy use. It was found that adding booster stations could save energy depending upon the system characteristics. For systems with flat topography, a single main pumping station was found to use less energy. In systems with a higher-elevation neighborhood, however, one or more booster pumps with a reduced main pumping station capacity used less energy. The energy savings for the seven systems was dependent on the number of boosters and ranged from 5% to 66% for the analyzed five systems with higher elevation neighborhoods (S3, S4, S5, S6, and S7). No energy savings was realized for the remaining two flat topography systems, S1, and S2. The present study analyzed and established the relationship between various system aspects and energy use in seven MDWDSs. This aids in estimating the amount of energy savings in MDWDSs. This energy savings would ultimately help reduce Greenhouse gases (GHGs) emissions including per capita CO 2 emissions thereby potentially lowering the global climate change effect. This will in turn contribute to meeting the MDG of ensuring environmental sustainability.
Resumo:
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.