947 resultados para Radar absorber measurements
Resumo:
This model connects directly the radar reflectivity data and hydrological variable runoff. The catchment is discretized in pixels (4 Km × 4 Km) with the same resolution of the CAPPI. Careful discretization is made so that every grid catchment pixel corresponds precisely to CAPPI grid cell. The basin is assumed a linear system and also time invariant. The forecast technique takes advantage of spatial and temporal resolutions obtained by the radar. The method uses only the measurements of the factor reflectivity distribution observed over the catchment area without using the reflectivity - rainfall rate transformation by the conventional Z-R relationships. The reflectivity values in each catchment pixel are translated to a gauging station by using a transfer function. This transfer function represents the travel time of the superficial water flowing through pixels in the drainage direction ending at the gauging station. The parameters used to compute the transfer function are concentration time and the physiographic catchment characteristics. -from Authors
Resumo:
We tested a set of surface common mid-point (CMP) ground penetrating radar (GPR) surveys combined with elevation rods ( to monitor surface deformation) and gas flux measurements to investigate in-situ biogenic gas dynamics and ebullition events in a northern peatland ( raised bog). The main findings are: ( 1) changes in the two-way travel time from the surface to prominent reflectors allow estimation of average gas contents and evolution of free-phase gas (FPG); ( 2) peat surface deformation and gas flux measurements are strongly consistent with GPR estimated changes in FPG content over time; ( 3) rapid decreases in atmospheric pressure are associated with increased gas flux; and ( 4) single ebullition events can induce releases of methane much larger ( up to 192 g/m(2)) than fluxes reported by others. These results indicate that GPR is a useful tool for assessing the spatial distribution, temporal variation, and volume of biogenic gas deposits in peatlands.
Resumo:
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.
Resumo:
We performed surface and borehole ground penetrating radar (GPR) tests, together with moisture probe measurements and direct gas sampling to detect areas of biogenic gas accumulation in a northern peatland. The main findings are: (1) shadow zones (signal scattering) observed in surface GPR correlate with areas of elevated CH4 and CO2 concentration; (2) high velocities in zero offset profiles and lower water content inferred from moisture probes correlate with surface GPR shadow zones; (3) zero offset profiles depict depth variable gas accumulation from 0-10% by volume; (4) strong reflectors may represent confining layers restricting upward gas migration. Our results have implications for defining the spatial distribution, volume and movement of biogenic gas in peatlands at multiple scales.
Resumo:
This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.
Resumo:
Aims. Permittivity measurements on porous samples of volcanic origin have been performed in the 0.05-190 GHz range under laboratory conditions in support of the Rosetta mission to comet 67P/Churyumov-Gerasimenko, specifically with the MIRO radiometric experiment and CONSERT radar experiment. Methods. The samples were split into several subsamples with different size ranges covering a few mu m to 500 mu m. Bulk densities of the subsamples were estimated to be in the 800 to 1500 kg/m(3) range. The porosities were in the range of 48% to 65%. From 50 MHz to 6 GHz and at 190 GHz, permittivity has been determined with a coaxial cell and with a quasi-optical bench, respectively. Results. Without taking into account the volume-scattering effect at 190 GHz, the real part of the permittivity, normalized by the bulk density, is in the range of 2.1 to 2.6. The results suggest that the real part of the permittivity of an ice-free dust mantle covering the nucleus is in the 1.5-2.2 range at 190 GHz. From these values, a lower limit for the absorption length for the millimeter receiver of MIRO has been estimated to be between 0.6 and 2 cm, in agreement with results obtained from MIRO in September 2014. At frequencies of interest for CONSERT experiment, the real part of the permittivity of a suspected ice-free dust mantle should be below 2.2. It may be in the range of 1.2 to 1.7 for the nucleus, in agreement with first CONSERT results, taking into account a mean temperature of 110 K and different values for the dust-to-ice volumetric ratio. Estimations of contributions of the different parameters to the permittivity variation may indicate that the porosity is the main parameter.
Resumo:
The ice thickness of 15 South Tyrolean glaciers has been surveyed with two different types of radar systems between 1996 and 2014 within various research projects. For all glaciers apart from Weissbrunnferner, the Laser scan DEMs of the South Tyrolean glacier inventories had been taken as basis for the data processing. Earlier data has been measured with the Narod Sensor using a central frequency of 6.5 MHz, later data was recorded with a GSSI SIR 3000 system. The positions have been measured with a Garmin handheld GPS. The snow height at the time of the measurement was recorded by snow probing. The majority of the glaciers have been surveyed between 2009 and 2014, 9 glaciers in the year 2013. The methods for measurements and calculation of ice thickness are described in the various reports.
Resumo:
As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core drilling contributing to the International Partnerships in Ice Core Sciences (IPICS), ground based kinematic GPS measurements were conducted in early 2007 in the vicinity of the German overwintering station Neumayer (8.25° W and 70.65° S). The investigated area comprises the regions of the ice tongues Halvfarryggen and Søråsen, which rise from the Ekströmisen to a maximum of about 760 m surface elevation, and have an areal extent of about 100 km x 50 km each. Available digital elevation models (DEMs) from radar altimetry and the Antarctic Digital Database show elevation differences of up to hundreds of meters in this region, which necessitated an accurate survey of the conditions on-site. An improved DEM of the Ekströmisen surroundings is derived by a combination of highly accurate ground based GPS measurements, satellite derived laser altimetry data (ICESat), airborne radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here achieves a vertical accuracy of about 1.3 m and can be used for improved ice dynamic modeling and mass balance studies.
Resumo:
Up to now, snow cover on Antarctic sea ice and its impact on radar backscatter, particularly after the onset of freeze/thaw processes, are not well understood. Here we present a combined analysis of in situ observations of snow properties from the landfast sea ice in Atka Bay, Antarctica, and high-resolution TerraSAR-X backscatter data, for the transition from austral spring (November 2012) to summer (January 2013). The physical changes in the seasonal snow cover during that time are reflected in the evolution of TerraSAR-X backscatter. We are able to explain 76-93% of the spatio-temporal variability of the TerraSAR-X backscatter signal with up to four snowpack parameters with a root-mean-squared error of 0.87-1.62 dB, using a simple multiple linear model. Over the complete study, and especially after the onset of early-melt processes and freeze/thaw cycles, the majority of variability in the backscatter is influenced by changes in snow/ice interface temperature, snow depth and top-layer grain size. This suggests it may be possible to retrieve snow physical properties over Antarctic sea ice from X-band SAR backscatter.
Resumo:
Results of helicopter-borne electromagnetic measurements of total (ice plus snow) sea-ice thickness performed in May 2004 and 2005 in the Lincoln Sea and adjacent Arctic Ocean up to 86° N are presented. Thickness distributions south of 84° N are dominated by multi-year ice with modal thicknesses of 3.9 m in 2004 and 4.2 m in 2005 (mean thicknesses 4.67 and 5.18 m, respectively). Modal and mean snow thickness on multi-year ice amounted to 0.18 and 0.30 m in 2004, and 0.28 and 0.35 m in 2005. There are also considerable amounts of 0.9-2.2 m thick first-year ice (modal thickness), mostly representing ice formed in the recurring, refrozen Lincoln Polynya. Results are in good agreement with ground-based electromagnetic thickness measurements and with ice types demarcated in satellite synthetic aperture radar imagery. Four drifting buoys deployed in 2004 between 86° N and 84.5° N show a similar pattern of a mean southward drift of the ice pack of 83 ± 18 km between May 2004 and April 2005, towards the coast of Ellesmere Island and Nares Strait. The resulting area decrease of 26% between the buoys and the coast is larger than the observed thickness increase south of 84° N. This points to the importance of shear in a narrow band along the coast, and of ice export through Nares Strait in removing ice from the study region.
Resumo:
The knowledge of ice sheet surface topography and the location of the ice divides are essential for ice dynamic modeling. An improved digital elevation model (DEM) of Dronning Maud Land (DML), Antarctica, is presented in this paper. It is based on ground-based kinematic GPS profiles, airborne radar altimetry, and data of the airborne radio-echo sounding system, as well as spaceborne laser altimetry from NASA's Ice, Cloud and land Elevation Satellite (ICESat). The accuracy of ICESat ice sheet altimetry data in the area of investigation is discussed. The location of the ice divides is derived from aspect calculation of the topography and is verified with several velocity data derived from repeated static GPS measurements.
Resumo:
We present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part). The data set is composed of groundbased and airborne Ground Penetrating Radar (GPR) and differential GPS (DGPS) measurements, obtained during several field campaigns. The data set incorporates groundbased measurements in the safely accessible inner parts and airborne measurements in the heavily crevassed coastal areas of the ice cap. In particular, the inclusion of airborne GPR measurements with the 30MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster) completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. The mean ice thickness is approx. 238m, with a maximum value of approx. 400m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists.
Resumo:
We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries.
Resumo:
One of the aims of the SvalGlac project is to obtain an improved estimate, with reliable error estimates, of the volume of Svalbard glaciers and their potential contribution to sea level rise. As part of this work, we present volume calculations, with detailed error estimates, for eight glaciers on Wedel Jarlsberg Land, southern Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 2004-2011. The total area and volume of the ensemble are 502.9±18.6 km2 and 80.72±2.85 km3, respectively. Excluding Ariebreen (a tiny glacier, menor que 0.4 km2 in area), the individual areas, volumes and average ice thickness lie within 4.7-141.0 km2, 0.30-25.85 km3 and 64-183 m, respectively. The maximum recorded ice thickness, ca. 619±13 m, is found in Austre Torellbreen. To estimate the ice volume of small non-echo-sounded tributary glaciers, we used a function providing the best fit to the ice thickness along the centre line of a collection of such tributaries where echo-soundings were available, and assuming parabolic cross-sections. We did some tests on the effect on the measured ice volumes of the distinct radio-wave velocity (RWV) of firn as compared to ice, and cold versus temperate ice, concluding that the changes in volume implied by such corrections were within the error bounds of our volume estimate using a constant RWV for the entire glacier inferred from common mid-point measurements on the upper ablation area.