953 resultados para RP
Resumo:
Organic acids are important constituents of fruit juices. They render tartness, flavour and specific taste to fruit juices. Shelf life and stability of fruit juices are important factors, which determine their nutritional quality and freshness. In this view, the effect of storage on the concentration of organic acids in commercially packed fruit juices is studied by reverse phase high performance liquid chromatography (RP-HPLC). Ten packed fruit juices from two different brands are stored at 30 C for 24, 48 and 72 hours. A reverse phase high performance liquid chromatographic method is used to determine the concentration of oxalic, tartaric, malic, ascorbic and citric acid in the fruit juices during storage. The chromatographic analysis of organic acids is carried out using mobile phase 0.5% (w/v) ammonium dihydrogen orthophosphate buffer (pH 2.8) on C18 column with UV-Vis detector. The results show that the concentration of organic acids generally decreases in juices under study with the increase in storage time. All the fruit juices belonging to tropicana brand underwent less organic acid degradation in comparison to juices of real brand. Orange fruit juice is found to be least stable among the juices under study, after the span of 72 hours. Amongst all the organic acids under investigation minimum stability is shown by ascorbic acid followed by malic and citric acid.
Resumo:
Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i.e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials.
Resumo:
We report on the substrate assisted doping of ZnO nanowires grown by a vapor transport technique. The nanowires were grown non-catalytically on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG). Carbon from MWCNTs and sodium from SLG diffuse into ZnO during the growth and are distributed uniformly and provide doping. An advantage associated with the technique is that no conventional external dopant source is required to obtain doped ZnO nanowires. The diameter, length and hence the aspect ratio can easily be varied by changing the growth conditions. The transport studies on both carbon and sodium doped ZnO support the p-type nature of ZnO. The p-type nature of carbon doped ZnO is stable for at least eight months.
Resumo:
We theoretically explore the annihilation of vortex dipoles, generated when an obstacle moves through an oblate Bose-Einstein condensate, and examine the energetics of the annihilation event. We show that the grey soliton, which results from the vortex dipole annihilation, is lower in energy than the vortex dipole. We also investigate the annihilation events numerically and observe that annihilation occurs only when the vortex dipole overtakes the obstacle and comes closer than the coherence length. Furthermore, we find that noise reduces the probability of annihilation events. This may explain the lack of annihilation events in experimental realizations.
Resumo:
We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as p-type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current p-type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.
Resumo:
ZnO is a unique material with numerous applications. There has been great interest in the synthesis of long nanowires to explore new technology coupled with length. But the quest to enhance the length is limited by various experimental shortcomings such as catalytic poisoning, degradation of the precursors and growth in all possible directions. This review article focuses on the growth of ultralong ZnO nanowires along with possible methodologies to overcome these limitations.
Resumo:
Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 +/- A 4.1) and the RIP (19.57 +/- A 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.
Resumo:
The increasing industrial utilization of polyacrylamide to assist water clarification, sludge conditioning, papermaking, and secondary oil recovery leads to environmental pollution. In this work, an acrylamide degrading bacterium was isolated from paper mill effluent at Charan mahadevi, Tamilnadu, India. The minimal medium containing acrylamide (40 mM) served as a sole source of carbon and nitrogen for acrylamide degrading bacteria. The bacterial strain has grown well in 40 mM acrylamide at pH (6-7) at 30 degrees C. Within 24-48 h acrylamide was converted into acrylic acid and other metabolites. Based on biochemical characteristics and 16S rRNA gene sequence, the bacterial strain was identified as Gram negative, diplobacilli Moraxella osloensis MSU11. The acrylamide hydrolyzing bacterial enzyme acrylamidase was purified by HPLC. The enzyme molecular weight was determined to be approximately 38 kDa by SDS-PAGE using reference enzyme Pectinase. These results show that M. osloensis MSU11 has a potential to degrade the acrylamide present in the environment. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis of branched ZnO nanostructures by vapour phase transport and their multistage effect in enhancing the field emission behaviour. First, the ZnO nanowires (first generation) are grown and second generation nanowires are grown on first one and so on to obtain the branched structures. The number of branches increases and the diameter of the branches decreases till the third generation nanowires. Fourth generation onwards, dense branched structures are obtained eventually yielding nanoforest-like morphology. The field emission behaviour is found to improve till the third generation and is assigned to smaller diameter of the branches. (C) 2014 AIP Publishing LLC.
Resumo:
The present study examines an improved detoxification and rapid biological degradation of toxic pollutant acrylamide using a bacterium. The acrylamide degrading bacterium was isolated from the soil followed by its screening to know the acrylamide degrading capability. The minimal medium containing acrylamide (30 mM) served as a sole source of carbon and nitrogen for their active growth. The optimization of three different factors was analyzed by using Response Surface Methodology (RSM). The bacteria actively degraded the acrylamide at a temperature of 32 degrees C, with a maximum growth at 30 mM substrate (acrylamide) concentration at a pH of 7.2. The acrylamidase activity and degradation of acrylamide was determined by High Performance Liquid Chromatography (HPLC) and Matrix Assisted Laser Desorption and Ionization Time of Flight mass spectrometer (MALDI-TOF). Based on 168 rRNA analysis the selected strain was identified as Gram negative bacilli Stenotrophomonas acidaminiphila MSU12. The acrylamidase was isolated from bacterial extract and was purified by HPLC, whose mass spectrum showed a molecular mass of 38 kDa. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite-charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg-Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870 degrees C and 8kbar. The zircon U-Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 +/- 73, 831 +/- 31, and 772 +/- 49Ma, respectively. Negative zircon epsilon Hf (t) (-5 to -20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg-Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite+quartz+aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg-Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.
Resumo:
Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.
Resumo:
A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40-50 nm.