987 resultados para RF simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eco-driving is an initiative driving behavior which aims to reduce fuel consumption and emissions from automobiles. Recently, it has attracted increasing interests and has been adopted by many drivers in Australia. Although many of the studies have revealed considerable benefits in terms of fuel consumption and emissions after utilising eco-driving, most of the literature investigated eco-driving effects on individual driver but not traffic flow. The driving behavior of eco-drivers will potentially affect other drivers and thereby affects the entire traffic flow. To comprehensively assess and understand how effectively eco-driving can perform, therefore, measurement on traffic flow is necessary. In this paper, we proposed and demonstrated an evaluation method based on a microscopic traffic simulator (Aimsun). We focus on one particular eco-driving style which involves moderate and smooth acceleration. We evaluated both traffic performance (travel time) and environmental performance (fuel consumption and CO2 emission) at traffic intersection level in a simple simulation model. The before-and-after comparisons indicated potentially negative impacts when using eco-driving, which highlighted the necessity to carefully evaluate and improve eco-driving before wide promotion and implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) models for ultrahigh velocity waterjets and abrasive waterjets (AWJs) are established using the Fluent 6 flow solver. Jet dynamic characteristics for the flow downstream from a very fine nozzle are then simulated under steady state, turbulent, two-phase and three-phase flow conditions. Water and particle velocities in a jet are obtained under different input and boundary conditions to provide an insight into the jet characteristics and a fundamental understanding of the kerf formation process in AWJ cutting. For the range of downstream distances considered, the results indicate that a jet is characterised by an initial rapid decay of the axial velocity at the jet centre while the cross-sectional flow evolves towards a top-hat profile downstream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High fidelity simulation as a teaching and learning approach is being embraced by many schools of nursing. Our school embarked on integrating high fidelity (HF) simulation into the undergraduate clinical education program in 2011. Low and medium fidelity simulation has been used for many years, but this did not simplify the integration of HF simulation. Alongside considerations of how and where HF simulation would be integrated, issues arose with: student consent and participation for observed activities; data management of video files; staff development, and conceptualising how methods for student learning could be researched. Simulation for undergraduate student nurses commenced as a formative learning activity, undertaken in groups of eight, where four students undertake the ‘doing’ role and four are structured observers, who then take a formal role in the simulation debrief. Challenges for integrating simulation into student learning included conceptualising and developing scenarios to trigger students’ decision making and application of skills, knowledge and attitudes explicit to solving clinical ‘problems’. Developing and planning scenarios for students to ‘try out’ skills and make decisions for problem solving lay beyond choosing pre-existing scenarios inbuilt with the software. The supplied scenarios were not concept based but rather knowledge, skills and technology (of the manikin) focussed. Challenges lay in using the technology for the purpose of building conceptual mastery rather than using technology simply because it was available. As we integrated use of HF simulation into the final year of the program, focus was on building skills, knowledge and attitudes that went beyond technical skill, and provided an opportunity to bridge the gap with theory-based knowledge that students often found difficult to link to clinical reality. We wished to provide opportunities to develop experiential knowledge based on application and clinical reasoning processes in team environments where problems are encountered, and to solve them, the nurse must show leadership and direction. Other challenges included students consenting for simulations to be videotaped and ethical considerations of this. For example if one student in a group of eight did not consent, did this mean they missed the opportunity to undertake simulation, or that others in the group may be disadvantaged by being unable to review their performance. This has implications for freely given consent but also for equity of access to learning opportunities for students who wished to be taped and those who did not. Alongside this issue were the details behind data management, storage and access. Developing staff with varying levels of computer skills to use software and undertake a different approach to being the ‘teacher’ required innovation where we took an experiential approach. Considering explicit learning approaches to be trialled for learning was not a difficult proposition, but considering how to enact this as research with issues of blinding, timetabling of blinded groups, and reducing bias for testing results of different learning approaches along with gaining ethical approval was problematic. This presentation presents examples of these challenges and how we overcame them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS This paper reports on the implementation of a research project that trials an educational strategy implemented over six months of an undergraduate third year nursing curriculum. This project aims to explore the effectiveness of ‘think aloud’ as a strategy for learning clinical reasoning for students in simulated clinical settings. BACKGROUND Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting [1]. Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. For students learning to manage complex clinical situations, teaching approaches are required that make these instinctive cognitive processes explicit and clear [2-5]. In line with professional expectations, nursing students in third year at Queensland University of Technology (QUT) are expected to display clinical reasoning skills in practice. This can be a complex proposition for students in practice situations, particularly as the degree of uncertainty or decision complexity increases [6-7]. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students [4, 8]. This project aims to use the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students are assisted to uncover cognitive approaches that best assist them to make effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection on their practice. MEHODS In semester 2 2011 at QUT, third year nursing students will undertake high fidelity simulation, some for the first time commencing in September of 2011. There will be two cohorts for strategy implementation (group 1= use think aloud as a strategy within the simulation, group 2= not given a specific strategy outside of nursing assessment frameworks) in relation to problem solving patient needs. Students will be briefed about the scenario, given a nursing handover, placed into a simulation group and an observer group, and the facilitator/teacher will run the simulation from a control room, and not have contact (as a ‘teacher’) with students during the simulation. Then debriefing will occur as a whole group outside of the simulation room where the session can be reviewed on screen. The think aloud strategy will be described to students in their pre-simulation briefing and allow for clarification of this strategy at this time. All other aspects of the simulations remain the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). RESULTS Methodology of the project and the challenges of implementation will be the focus of this presentation. This will include ethical considerations in designing the project, recruitment of students and implementation of a voluntary research project within a busy educational curriculum which in third year targets 669 students over two campuses. CONCLUSIONS In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs. References 1. Lasater, K., High-fidelity simulation and the development of clinical judgement: students' experiences. Journal of Nursing Education, 2007. 46(6): p. 269-276. 2. Lapkin, S., et al., Effectiveness of patient simulation manikins in teaching clinical reasoning skills to undergraduate nursing students: a systematic review. Clinical Simulation in Nursing, 2010. 6(6): p. e207-22. 3. Kaddoura, M.P.C.M.S.N.R.N., New Graduate Nurses' Perceptions of the Effects of Clinical Simulation on Their Critical Thinking, Learning, and Confidence. The Journal of Continuing Education in Nursing, 2010. 41(11): p. 506. 4. Banning, M., The think aloud approach as an educational tool to develop and assess clinical reasoning in undergraduate students. Nurse Education Today, 2008. 28: p. 8-14. 5. Porter-O'Grady, T., Profound change:21st century nursing. Nursing Outlook, 2001. 49(4): p. 182-186. 6. Andersson, A.K., M. Omberg, and M. Svedlund, Triage in the emergency department-a qualitative study of the factors which nurses consider when making decisions. Nursing in Critical Care, 2006. 11(3): p. 136-145. 7. O'Neill, E.S., N.M. Dluhy, and C. Chin, Modelling novice clinical reasoning for a computerized decision support system. Journal of Advanced Nursing, 2005. 49(1): p. 68-77. 8. Lee, J.E. and N. Ryan-Wenger, The "Think Aloud" seminar for teaching clinical reasoning: a case study of a child with pharyngitis. J Pediatr Health Care, 1997. 11(3): p. 101-10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the road, near collision events (also close calls or near-miss incidents) largely outnumber actual crashes, yet most of them can never be recorded by current traffic data collection technologies or crashes analysis tools. The analysis of near collisions data is an important step in the process of reducing the crash rate. There have been several studies that have investigated near collisions; to our knowledge, this is the first study that uses the functionalities provided by cooperative vehicles to collect near misses information. We use the VISSIM traffic simulator and a custom C++ engine to simulate cooperative vehicles and their ability to detect near collision events. Our results showed that, within a simple simulated environment, adequate information on near collision events can be collected using the functionalities of cooperative perception systems. The relationship between the ratio of detected events and the ratio of equipped vehicle was shown to closely follow a squared law, and the largest source of nondetection was packet loss instead of packet delays and GPS imprecision.