883 resultados para REGENERATION
Resumo:
The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the Xray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpatdia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.
Resumo:
A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the. presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml(-1)). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.
Resumo:
Detritus, as a nutrients reservoir, affects the trophic structure and dynamics of communities and supports a greater diversity of species and longer food chains. Detritivorous fish is an important organism to regenerate the nutrients from sediments. Despite the numerous studies on the nutrients cycle in fish, only a few attempts have been made to quantify the regenerating ability. In the present study, we chose the common detritivorous fish redeye mullet as the research object. Redeye mullet is also a common poly-culture fish in China. Diet, including a commercial diet mostly used in aquaculture and a home-made diet with contents close to detritus, was used and considered as a fixed factor. Temperature was also considered as a fixed factor as much research has shown that temperature has significant effects on fish metabolism. Moreover, body size was regarded as a covariate under analysis of covariance. Three key nutrients, namely carbon, nitrogen and phosphorus, were used to measure the nutrient-regenerating ability of redeye mullet under laboratory conditions. The results showed that the nutrient regeneration in percent of the consumption decreased with increasing temperature. Carbon and nitrogen regeneration of redeye mullet fed on commercial diet was lower than those of the home-made diet group, while the opposite was found for phosphorus. In each group, the amount of regenerated nutrients increased linearly with body size. Fed on the home-made diet, 5-g fish at 25 degrees C can regenerate 210.822 mg C, 37.533 mg N and 0.727 mg P per day.
Regeneration behaviors of Fe/Si-2 and Fe-Mn/Si-2 catalysts for C2H6 dehydrogenation with CO2 to C2H4
Resumo:
The catalytic performance of Fe/Si-2 and Fe-Mn/Si-2 catalysts for conversion of C2H6 with CO2 to C2H4 was examined in a continuous-flow and fixed-bed reactor. The results show that the Fe-Mn/Si-2 catalyst exhibits much better reaction activity and selectivity to C2H4 than those of the Fe/Si-2 catalyst. Furthermore, the coking-decoking behaviors of these catalysts were studied through TG. The catalytic performances of the catalysts after regeneration for conversion of C2H6 or dilute C2H6 in FCC off-gas with CO2 to C2H4 were also examined. The results show that both activity and selectivity of the Fe-Mn/Si-2 catalyst after regeneration reached the same level as those of the fresh catalyst, whereas it is difficult for the Fe/Si-2 catalyst to refresh its reaction behavior after regeneration.
Resumo:
The thin alumina film-supported metallic molybdenum model catalyst was prepared by thermal decomposition of MO(CO)6, and CO chemisorption on the catalyst was investigated in-situ by thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). The results showed that a molybdenum-carbonyl-like species was formed on the alumina surface at low temperature by high coordination of CO with the surface metallic molybdenum nanoparticles, indicating a reversible regeneration of molybdenum carbonyl on the alumina surface. CO chemisorption on the model catalyst surface caused the Mo 3d XPS peak to shift toward higher binding energy. The formed molybdenum carbonyl species appeared at about 240 K in the TDS. The supported metallic molybdenum nanoparticles were quite different from the bulk molybdenum in chemical properties, which indicated a prominent particle-size effect of the clusters.
Resumo:
The thesis examines cultural processes underpinning the emergence, institutionalisation and reproduction of class boundaries in Limerick city. The research aims to bring a new understanding to the contemporary context of the city’s urban regeneration programme. Acknowledging and recognising other contemporary studies of division and exclusion, the thesis creates a distinctive approach which focuses on uncovering the cultural roots of inequality, educational disadvantage, stigma and social exclusion and the dynamics of their social reproduction. Using Bateson’s concept of schismogenesis (1953), the thesis looks to the persistent, but fragmented culture of community and develops a heuristic ‘symbolic order of the city’. This is defined as “…a cultural structure, the meaning making aspect of hierarchy, the categorical structures of world understanding, the way Limerick people understand themselves, their local and larger world” (p. 37). This provides a very different departure point for exploring the basis for urban regeneration in Limerick (and everywhere). The central argument is that if we want to understand the present (multiple) crises in Limerick we need to understand the historical, anthropological and recursive processes underpinning ‘generalised patterns of rivalry and conflict’. In addition to exploring the historical roots of status and stigma in Limerick, the thesis explores the mythopoesis of persistent, recurrent narratives and labels that mark the boundaries of the city’s identities. The thesis examines the cultural and social function of ‘slagging’ as a vernacular and highly particularised form of ironic, ritualised and, often, ‘cruel’ medium of communication (often exclusion). This is combined with an etymology of the vocabulary of Limerick slang and its mythological base. By tracing the origins of many normalised patterns of Limerick speech ‘sayings’, which have long since forgotten their roots, the thesis demonstrates how they perform a significant contemporary function in maintaining and reinforcing symbolic mechanisms of inclusion/exclusion. The thesis combines historical and archival data with biographical interviews, ethnographic data married to a deep historical hermeneutic analysis of this political community.
Resumo:
Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.
Resumo:
Regenerative medicine for complex tissues like limbs will require the provision or activation of precursors for different cell types, in the correct number, and with the appropriate instructions. These strategies can be guided by what is learned from spectacular events of natural limb or fin regeneration in urodele amphibians and teleost fish. Following zebrafish fin amputation, melanocyte stripes faithfully regenerate in tandem with complex fin structures. Distinct populations of melanocyte precursors emerge and differentiate to pigment regenerating fins, yet the regulation of their proliferation and patterning is incompletely understood. Here, we found that transgenic increases in active Ras dose-dependently hyperpigmented regenerating zebrafish fins. Lineage tracing and marker analysis indicated that increases in active Ras stimulated the in situ amplification of undifferentiated melanocyte precursors expressing mitfa and kita. Active Ras also hyperpigmented early fin regenerates of kita mutants, which are normally devoid of primary regeneration melanocytes, suppressing defects in precursor function and survival. By contrast, this protocol had no noticeable impact on pigmentation by secondary regulatory melanocyte precursors in late-stage kita regenerates. Our results provide evidence that Ras activity levels control the repopulation and expansion of adult melanocyte precursors after tissue loss, enabling the recovery of patterned melanocyte stripes during zebrafish appendage regeneration.
Resumo:
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Resumo:
Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.
Resumo:
Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.
Resumo:
Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.
Resumo:
Article explores how tourism might be the key driver to urban regeneration in towns and cities as economic crisis deepens.