992 resultados para REDUCED GRADIENT
Resumo:
The literature to date shows that children from poorer households tend to have worse health than their peers, and the gap between them grows with age. We investigate whether and how health shocks (as measured by the onset of chronic conditions) contribute to the income–child health gradient and whether the contemporaneous or cumulative effects of income play important mitigating roles. We exploit a rich panel dataset with three panel waves called the Longitudinal Study of Australian children. Given the availability of three waves of data, we are able to apply a range of econometric techniques (e.g. fixed and random effects) to control for unobserved heterogeneity. The paper makes several contributions to the extant literature. First, it shows that an apparent income gradient becomes relatively attenuated in our dataset when the cumulative and contemporaneous effects of household income are distinguished econometrically. Second, it demonstrates that the income–child health gradient becomes statistically insignificant when controlling for parental health and health-related behaviours or unobserved heterogeneity.
Resumo:
In this paper we attack round-reduced Keccak hash function with a technique called rotational cryptanalysis. We focus on Keccak variants proposed as SHA-3 candidates in the NIST’s contest for a new standard of cryptographic hash function. Our main result is a preimage attack on 4-round Keccak and a 5-round distinguisher on Keccak-f[1600] permutation — the main building block of Keccak hash function.
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.
Resumo:
The reduction of unnecessary regulation was a clear policy objective of the Queensland government during 2014. In the area of property sales significant reforms were introduced from 1 December 2014. This article examines the key aspects of these reforms and whether there has been a reduction in red tape for sellers and buyers of land.
Resumo:
A description of a computer program to analyse cine angiograms of the heart and pressure waveforms to calculate valve gradients.
Resumo:
Ectopic calcification (EC), which is the pathological deposition of calcium and phosphate in extra-skeletal tissues, may be associated with hypercalcaemic and hyperphosphataemic disorders, or it may occur in the absence of metabolic abnormalities. In addition, EC may be inherited as part of several monogenic disorders and studies of these have provided valuable insights into the metabolic pathways regulating mineral metabolism. For example, studies of tumoural calcinosis, a disorder characterised by hyperphosphataemia and progressive EC, have revealed mutations of fibroblast growth factor 23 (FGF23), polypeptide N-acetyl galactosaminyltransferase 3 (GALNT3) and klotho (KL), which are all part of a phosphate-regulating pathway. However, such studies in humans are limited by the lack of available large families with EC, and to facilitate such studies we assessed the progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for EC. This identified two mutants with autosomal recessive forms of EC, and reduced lifespan, designated Ecalc1 and Ecalc2. Genetic mapping localized the Ecalc1 and Ecalc2 loci to a 11.0 Mb region on chromosome 5 that contained the klotho gene (Kl), and DNA sequence analysis identified nonsense (Gln203Stop) and missense (Ile604Asn) Kl mutations in Ecalc1 and Ecalc2 mice, respectively. The Gln203Stop mutation, located in KL1 domain, was severely hypomorphic and led to a 17-fold reduction of renal Kl expression. The Ile604Asn mutation, located in KL2 domain, was predicted to impair klotho protein stability and in vitro expression studies in COS-7 cells revealed endoplasmic reticulum retention of the Ile604Asn mutant. Further phenotype studies undertaken in Ecalc1 (kl203X/203X) mice demonstrated elevations in plasma concentrations of phosphate, FGF23 and 1,25-dihydroxyvitamin D. Thus, two allelic variants of Kl that develop EC and represent mouse models for tumoural calcinosis have been established. © 2015 Esapa et al.
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.
Resumo:
Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnOx) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnOx/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g−1 at 10 mV s−1, which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnOx. Moreover, atmospheric-pressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnOx nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors
Resumo:
In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.
Resumo:
Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4′,5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates “sticky” pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host–guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.