978 resultados para RAYLEIGH-LIKE DISSIPATION FUNCTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1-decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA-mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin-transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca(2+) switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca(2+) repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW: The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN: This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE: The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) molecules are of crucial importance for the immune system to recognize and defend the body against external attacks. Foreign antigens are presented by specialized cells, called antigen presenting cells, to T lymphocytes in the context of MHC molecules, thereby inducing T cell activation. In addition, MHC molecules are essential for Natural Killer (NK) cell biology, playing a role in NK cell education and activation. Recently, the NOD-like receptor (NLR) family member NLRC5 (NLR caspase recruitment domain containing protein 5) was found to act as transcriptional regulator of MHC class I, in particular in T and NK cells. Its role in MHC class I expression is however minor in dendritic cells (DCs). This raised the question of whether inflammatory conditions, which augment the levels of NLRC5 in DCs, could increase its contribution to MHC class I expression. Our work shows that MHC class I transcript and intracellular levels depend on NLRC5, while its role in MHC class I surface expression is instead negligible. We describe however a general salvage mechanism that enables cells with low intracellular MHC class I levels to nevertheless maintain relatively high MHC class I on the cell surface. In addition, we lack a thorough understanding of NLRC5 target gene specificity and mechanism of action. Our work delineates the unique consensus sequence in MHC class I promoters required for NLRC5 recruitment and pinpoints conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHC class I genes and identify novel target genes all encoding non-classical MHC class I molecules exerting an array of functions in immunity and tolerance. We finally asked why a dedicated factor co-regulates MHC class I expression specifically in T and NK lymphocytes. We show that deregulated NLRC5 expression affects the education of NK cells and alters the crosstalk between T and NK cells, leading to NK cell-mediated killing of T lymphocytes. Altogether this thesis work brings insights into molecular and physiological aspects of NLRC5 function, which might help understand certain aspects of immune responses and disorders. -- Les molécules du complexe majeur d'histocompatibilité (CMH) sont essentielles au système immunitaire pour l'initiation de la réponse immunitaire. En effet, l'activation des lymphocytes T nécessite la reconnaissance d'un antigène étranger présenté par les cellules présentatrices d'antigènes sur une molécule du CMH. Les molécules du CMH ont également un rôle fondamental pour la fonction des cellules Natural Killer (NK) puisqu'elles sont nécessaires à leur processus d'éducation et d'activation. Récemment, NLRC5 (NLR caspase recruitment domain containing protein 5), un membre de la famille des récepteurs de type NOD (NLRs), a été décrit comme un facteur de transactivation de l'expression des gènes du CMH de classe I. A l'état basai, cette fonction transcriptionnelle est essentielle dans les lymphocytes T et NK, alors que ce rôle reste mineur pour l'expression des molécules du CMH de classe I dans les cellules dendritiques (DCs). Dans des conditions inflammatoires, l'expression de NLRC5 augmente dans les DCs. Notre travail démontre que, dans ces conditions, les transcrits et les niveaux intracellulaires des molécules du CMH de classe I augmentent aussi d'une façon dépendante de NLRC5. A contrario, le rôle de NLRC5 sur les niveaux de molécules de surface reste minoritaire. Cette observation nous a conduits à l'identification d'un mécanisme général de compensation qui permet aux cellules de maintenir des niveaux relativement élevés de molécules de CMH de class I à leur surface malgré de faibles niveaux intracellulaires. De plus, il semblait nécessaire de s'orienter vers une approche plus globale afin de déterminer l'étendue de la fonction transcriptionnelle de NLRC5. Par une approche du génome entier, nous avons pu décrire une séquence consensus conservée présente dans les promoteurs des gènes du CMH de classe I, sur laquelle NLRC5 est spécifiquement recruté. Nous avons pu également identifier de nouveaux gènes cibles codant pour des molécules de CMH de classe I non classiques impliqués dans l'immunité et la tolérance. Finalement, nous nous sommes demandé quel est l'intérêt d'avoir un facteur transcriptionnel, en l'occurrence NLRC5, qui orchestre l'expression du CMH de classe I dans les lymphocytes T et NK. Nous montrons que la dérégulation de l'expression de NLRC5 affecte l'éducation des cellules NK et conduit à la mort cellulaire des lymphocytes T médiée par les cellules NK. Dans l'ensemble ce travail de thèse contribue à la caractérisation du rôle de NLRC5, tant au niveau moléculaire que physiologique, ce qui présente un intérêt dans le cadre de la compréhension de certains aspects physiopathologique de la réponse immunitaire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c  − N f )g 3)), and with β g  → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f  − 2N c flips sign.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is a lethal progressive lung disease culminating in permanent airway obstruction and alveolar enlargement. Previous studies suggest CTL involvement in COPD progression; however, their precise role remains unknown. Here, we investigated whether the CTL activation receptor NK cell group 2D (NKG2D) contributes to the development of COPD. Using primary murine lung epithelium isolated from mice chronically exposed to cigarette smoke and cultured epithelial cells exposed to cigarette smoke extract in vitro, we demonstrated induced expression of the NKG2D ligand retinoic acid early tran - script 1 (RAET1)as well as NKG2D-mediated cytotoxicity. Furthermore, a genetic model of inducible RAET1 expression on mouse pulmonary epithelial cells yielded a severe emphysematous phenotype characterized by epithelial apoptosis and increased CTL activation, which was reversed by blocking NKG2D activation. We also assessed whether NKG2D ligand expression corresponded with pulmonary disease in human patients by staining airway and peripheral lung tissues from never smokers, smokers with normal lung function, and current and former smokers with COPD. NKG2D ligand expression was independent of NKG2D receptor expression in COPD patients, demonstrating that ligand expression is the limiting factor in CTL activation. These results demonstrate that aberrant, persistent NKG2D ligand expression in the pulmonary epithelium contributes to the development of COPD pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endodermis is a highly conserved cell layer present in the root of all vascular plants, except Lycophytes. This tissue layer establishes a protective diffusion barrier surrounding the vasculature and is expected to prevent passive, uncontrolled flow of nutrients through the root. This barrier property is achieved by the production of Casparian strips (CS), a localized cell wall impregnation of lignin in the anticlinal walls of each endodermal cell, forming a belt-like structure sealing the extracellular space. The CS act as a selective barrier between the external cell layers and the vascular cylinder and are thought to be important in many aspects of root function. For instance, selective nutrient uptake and sequestration from the soil, resistance to different abiotic and biotic stresses are expected to involve functional CS. Although discovered 150 years ago, nothing was known about the genes involved in CS establishment until recently. The use of the model plant Arabidopsis thaliana together with both reverse and forward genetic approaches led to the discovery of an increasing number of genes involved in different steps of CS formation during the last few years. One of these genes encodes SCHENGEN3 (SGN3), a leucine-rich repeat receptor-like kinase (LRR-RLK). SGN3 was discovered first by reverse genetic due to its endodermis-enriched expression, and the corresponding mutant displays strong endodermal permeability of the apoplastic tracer Propidium Iodide (PI) indicative of defective CS. One aim of this thesis is to study the role of SGN3 at the molecular level in order to understand its involvement in establishing an impermeable CS. The endodermal permeability of sgn3 is shown to be the result of incorrect localization of key proteins involved in CS establishment (the "Casparian strip domain proteins", CASPs), leading to non-functional CS interrupted by discontinuities. CASPs localize in the plasma membrane domain subjacent to the CS, named the Casparian Strip membrane Domain (CSD). The CSD discontinuities in sgn3 together with SGN3 localization in close proximity to the CASPs lead to the assumption that SGN3 is involved in the formation of a continuous CSD. In addition, SGN3 might have a second role, acting as a kinase reporting CSD integrity leading to lignin and suberin production in CSD/CS defective plants. Up to now, sgn3 is the strongest and most specific CS mutant available, displaying tracer penetration along the whole length of the seedling root. For this reason, this mutant is well suited in order to characterize the physiological behaviour of CS affected plants. Due to the lack of such mutants in the past, it was not possible to test the presumed functions of CS by using plants lacking this structure. We decided to use sgn3 for this purpose. Surprisingly, sgn3 overall growth is only slightly affected. Nevertheless, processes expected to rely on functional CS, such as water transport through the root, nutrient homeostasis, salt tolerance and resistance to an excess of some nutrients are altered in this mutant. On the other hand, homeostasis for most elements and drought tolerance are not affected in sgn3. It is surprising to observe that homeostatic defects are specific, with a decrease in potassium and an increase in magnesium levels. It indicates a backup system, set up by the plant in order to counteract free diffusion of nutrients into the stele. For instance, potassium shortage in sgn3 upregulates the transcription of potassium influx transport proteins and genes known to be induced by potassium starvation. Moreover, sgn3 mutant is hypersensitive to low potassium conditions. Hopefully, these results about SGN3 will help our understanding of CS establishment at the molecular level. In addition, physiological experiments using sgn3 should give us a framework for future experiments and help us to understand the different roles of CS and their involvement during nutrient radial transport through the root. -- L'endoderme est un tissu présent dans les racines de toutes les plantes vasculaires à l'exception des Lycophytes. Ce tissu établit une barrière protectrice entourant les tissus vasculaires dans le but d'éviter la diffusion passive et incontrôlée des nutriments au travers de la racine. Cette propriété de barrière provient de la production des cadres de Caspary, une imprégnation localisée de lignine des parties anticlinales de la paroi de chaque cellule d'endoderme. Cela donne naissance à un anneau/cadre qui rend étanche l'espace extracellulaire. Les cadres de Caspary agissent comme une barrière sélective entre les couches externes de la racine et le cylindre central et sont supposés être importants dans beaucoup d'aspects du fonctionnement de la racine. Par exemple, l'absorption sélective de nutriments et leur séquestration à partir du sol ainsi que la résistance contre différents stress abiotiques et biotiques sont supposés impliquer des cadres de Caspary fonctionnels. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans Ja formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana ainsi que des approches de génétique inverse et classique ont permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un des ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR-RLK). SGN3 a été découvert en premier par génétique inverse grâce à son expression enrichie dans l'endoderme. Les cadres de Caspary ne sont pas fonctionnels dans le mutant correspondant, ce qui est visible à cause de la perméabilité de l'endoderme au traceur apoplastique Propidium Iodide (PI). Un des objectifs de cette thèse est d'étudier la fonction de SGN3 au niveau moléculaire dans le but de comprendre son rôle dans la formation des cadres de Caspary. J'ai pu démontrer que la perméabilité de l'endoderme du mutant sgn3 est le résultat de la localisation incorrecte de protéines impliquées dans la formation des cadres de Caspary, les "Casparian strip domain proteins" (CASPs). Cela induit des cadres de Caspary non fonctionnels, contenant de nombreuses interruptions. Les CASPs sont localisés à la membrane plasmique dans un domaine sous-jacent les cadres de Caspary appelé Casparian Strip membrane Domain (CSD). Les interruptions du CSD dans le mutant sgn3, ainsi que la localisation de SGN3 à proximité des CASPs nous font penser à un rôle de SGN3 dans l'élaboration d'un CSD ininterrompu. De plus, SGN3 pourrait avoir un second rôle, agissant en tant que kinase reportant l'intégrité du CSD et induisant la production de lignine et de subérine dans des plantes contenant des cadres de Caspary non fonctionnels. Jusqu'à ce jour, sgn3 est le mutant en notre possession le plus fort et le plus spécifique, ayant un endoderme perméable tout le long de la racine. Pour cette raison, ce mutant est adéquat dans le but de caractériser la physiologie de plantes ayant des cadres de Caspary affectés. De manière surprenante, la croissance de sgn3 est seulement peu affectée. Néanmoins, des processus censés nécessiter des cadres de Caspary fonctionnels, comme le transport de l'eau au travers de la racine, l'homéostasie des nutriments, la tolérance au sel et la résistance à l'excès de certains nutriments sont altérés dans ce mutant. Malgré tout, l'homéostasie de la plupart des nutriments ainsi que la résistance au stress hydrique ne sont pas affectés dans sgn3. De manière surprenante, les altérations de l'ionome de sgn3 sont spécifiques, avec une diminution de potassium et un excès de magnésium. Cela implique un système de compensation établi par la plante dans le but d'éviter la diffusion passive des nutriments en direction du cylindre central. Par exemple, le manque de potassium dans sgn3 augmente la transcription de transporteurs permettant l'absorption de cet élément. De plus, des gènes connus pour être induits en cas de carence en potassium sont surexprimés dans sgn3 et la croissance de ce mutant est sévèrement affectée dans un substrat pauvre en potassium. Ces résultats concernant SGN3 vont, espérons-le, aider à la compréhension du processus de formation des cadres de Caspary au niveau moléculaire. De plus, les expériences de physiologie utilisant sgn3 présentées dans cette thèse devraient nous donner une base pour des expériences futures et nous permettre de comprendre mieux le rôle des cadres de Caspary, et plus particulièrement leur implication dans le transport radial des nutriments au travers de la racine. -- Les plantes terrestres sont des organismes puisant l'eau et les nutriments dont elles ont besoin pour leur croissance dans le sol grâce à leurs racines. De par leur immobilité, elles doivent s'adapter à des sols contenant des quantités variables de nutriments et il leur est crucial de sélectionner ce dont elles ont besoin afin de ne pas s'intoxiquer. Cette sélection est faite grâce à un filtre formé d'un tissu racinaire interne appelé endoderme. L'endoderme fabrique une barrière imperméable entourant chaque cellule appelée "cadre de Caspary". Ces cadres de Caspary empêchent le libre passage des nutriments, permettant un contrôle précis de leur passage. De plus, ils sont censés permettre de résister contre différents stress environnementaux comme la sécheresse, la salinité du sol ou l'excès de nutriments. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans la formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana a permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un de ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR- RLK). Nous montrons dans cette étude que le gène SGN3 est impliqué dans la formation des cadres de Caspary, et que le mutant correspondant sgn3 a des cadres de Caspary interrompus. Ces interruptions rendent l'endoderme perméable, l'empêchant de bloquer le passage des molécules depuis le sol vers le centre de la racine. En utilisant ce mutant, nous avons pu caractériser la physiologie de plantes ayant des cadres de Caspary affectés. Cela a permis de découvrir que le transport de l'eau au travers de la racine était affecté dans le mutant sgn3. De plus, l'accumulation de certains éléments dans les feuilles de ce mutant est altérée. Nous avons également pu montrer une sensibilité de ce mutant à un excès de sel ou de certains nutriments comme le fer et le manganèse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of bacterial Hsp40, DnaJ, is to co-chaperone the binding of misfolded or alternatively folded proteins to bacterial Hsp70, DnaK, which is an ATP-fuelled unfolding chaperone. In addition to its DnaK targeting activity, DnaJ has a weak thiol-reductase activity. In between the substrate-binding domain and the J-domain anchor to DnaK, DnaJ has a unique domain with four conserved CXXC motives that bind two Zn(2+) and partly contribute to polypeptide binding. Here, we deleted in DnaJ this Zn-binding domain, which is characteristic to type I but not of type II or III J-proteins. This caused a loss of the thiol-reductase activity and strongly reduced the ability of DnaJ to mediate the ATP- and DnaK-dependent unfolding/refolding of mildly oxidized misfolded polypeptides, an inhibition that was alleviated in the presence of thioredoxin or DTT. We suggest that in addition to their general ability to target misfolded polypeptide substrates to the Hsp70/Hsp110 chaperone machinery, Type I J-proteins carry an ancillary protein dithiol-isomerase function that can synergize the unfolding action of the chaperone, in the particular case of substrates that are further stabilized by non-native disulfide bonds. Whereas the unfoldase can remain ineffective without the transient untying of disulfide bonds by the foldase, the foldase can remain ineffective without the transient ATP-fuelled unfolding of wrong local structures by the unfoldase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor 2 (IGF2), produced and secreted by adult β-cells, functions as an autocrine activator of the β-cell insulin-like growth factor 1 receptor signaling pathway. Whether this autocrine activity of IGF2 plays a physiological role in β-cell and whole-body physiology is not known. Here, we studied mice with β-cell-specific inactivation of Igf2 (βIGF2KO mice) and assessed β-cell mass and function in aging, pregnancy, and acute induction of insulin resistance. We showed that glucose-stimulated insulin secretion (GSIS) was markedly reduced in old female βIGF2KO mice; glucose tolerance was, however, normal because of increased insulin sensitivity. While on a high-fat diet, both male and female βIGF2KO mice displayed lower GSIS compared with control mice, but reduced β-cell mass was observed only in female βIGF2KO mice. During pregnancy, there was no increase in β-cell proliferation and mass in βIGF2KO mice. Finally, β-cell mass expansion in response to acute induction of insulin resistance was lower in βIGF2KO mice than in control mice. Thus, the autocrine action of IGF2 regulates adult β-cell mass and function to preserve in vivo GSIS in aging and to adapt β-cell mass in response to metabolic stress, pregnancy hormones, and acute induction of insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. METHODS: Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. RESULTS: Immunohistochemical analysis showed an improved prognosis of ALDH1A2(high) OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2(high)CRABP2(high) staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. CONCLUSIONS: This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2(low) tumors might benefit from adjuvant treatment with retinoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During mitosis, the duplicated genome must be accurately divided between two daughter cells. Polo-like kinase 1 (Plk1) and Aurora B kinase, together with its binding partners Incenp, Survivin and Borealin (chromosomal passenger complex, CPC), have key roles in coordinating mitotic events. The accuracy of cell division is safeguarded by a signaling cascade termed the mitotic spindle checkpoint (SC), which ensures that chromosomes are not physically separated before correct bipolar attachments have been formed between kinetochores and spindle microtubules (MT). An inhibitory “wait anaphase” signal, which delays chromosome separation (anaphase onset), is created at individual kinetochores and broadcasted throughout the cell in response to lack of kinetochore-microtubule (kMT) attachment or proper interkinetochore tension. It is believed that the fast turnover of SC molecules at kinetochores contributes to the cell’s ability to produce this signal and enables rapid responses to changing cellular conditions. Kinetochores that lack MT attachment and tension express a certain phosphoepitope called the 3F3/2 phosphoepitope, which has been linked to SC signaling. In the experimental part, we investigated the regulation of the 3F3/2 phosphoepitope, analyzed whether CPC molecules turn over at centromeres, and dissected the mitotic roles of the CPC using a microinjection technique that allowed precise temporal control over its function. We found that the kinetochore 3F3/2 phosphoepitope is created by Plk1, and that CPC proteins exhibit constant exchange at centromeres. Moreover, we found that CPC function is necessary in the regulation of chromatid movements and spindle morphology in anaphase. In summary, we identified new functions of key mitotic regulators Plk1 and CPC, and provided insighs into the coordination of mitotic events.