331 resultados para RANKL e OPG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Receptor Activator of Nuclear Factor kappaB Ligand (RANKL), a member of the TNF superfamily, contributes to the imbalance of bone resorption and immunoregulation in rheumatoid arthritis. In mice, collagen induced arthritis was exacerbated by IL-3 and anti-IgER antibodies, two mediators activating basophils that are known as effector cells of allergy. Interestingly, our unpublished microarray data revealed that IL-3 induces RANKL mRNA in human basophils. Here we further investigate under which conditions human basophils express surface and/or soluble RANKL. Methods: One part of purified human basophils was co-stimulated with IL-3 and either IgE-dependent or IgE-independent stimuli. The other part of purified basophils was first primed with IL-3 and subsequently triggered with IgE-dependent or IgE-independent stimuli. Expression of surface and soluble RANKL were detected by flow cytometry, ELISA and real-time PCR. Results: By flow cytometry we show that IL-3 induces de novo expression of surface RANKL on human basophils in a time and dose dependent manner. Co-stimulation of basophils with IL-3 and an IgE-dependent stimulus reduces IL-3-induced expression of surface RANKL in a dose dependent manner while IgE-independent stimuli have no effect. In contrast, both IgE-dependent and IgE-independent stimuli enhance expression of surface and soluble RANKL in basophils that were first primed with IL-3 and then triggered. Real-time PCR analysis shows that surface hRANKL1 and soluble hRANKL3 are induced by IL-3 and reduced by co-stimulation with IL-3 and an IgE-dependent stimulus and thus confirms our flow cytometry data. Conclusion: RANKL expression in human basophils is not only dependent on IL-3 and IgE-dependent/IgE-independent stimuli but also on the sequence of their addition to cell culture. Based on our data, we suggest that basophils might have previously unidentified functions in bone resorption or immunoregulation via RANKL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Receptor activator of NF-κB ligand (RANKL) is expressed as either surface (hRANKL1, hRANKL2) or soluble (hRANKL3) form. RANKL is involved in multifaceted processes of immunoregulation and bone resorption such as they occur in rheumatoid arthritis (RA). Interestingly, activated basophils, which are effector cells in allergic inflammation, contribute to the progress of collagen-induced arthritis (CIA), a mouse model for RA. Here, we investigate under which conditions human basophils express RANKL. METHODS Among other stimuli, basophils were cultured with IL-3 alone. Alternatively, as a secondary stimulus, IgER-dependent or IgER-independent agents were added simultaneously either with IL-3 or after prolonged IL-3 culturing. Expression of RANKL protein and mRNA was analyzed by flow cytometry, ELISA, and real-time PCR. A coculture system was applied to investigate biological activity of basophil-derived RANKL. RESULTS We show that in human basophils, IL-3 but no other stimulus induces de novo expression of soluble and surface RANKL, of which the latter enhances survival of MoDC. Upon simultaneous stimulation, IgER cross-linking reduces surface RANKL expression, while IgER-independent stimuli have no effect. This is in contrast to consecutive stimulation, as triggering with both IgER-dependent and IgER-independent stimuli enhances RANKL expression, particularly in its soluble form. Real-time PCR analysis shows that RANKL expression is mainly regulated at the mRNA level. CONCLUSION This study identifies IL-3 as a potent inducer of RANKL expression in human basophils, suggesting them to interact with bone physiology and activation of immune cells. IgER-dependent and IgER-independent stimuli modulate the IL-3-mediated RANKL expression in a time- and stimulus-dependent fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O nicho endosteal da medula óssea abriga as células-tronco hemopoéticas (CTH) em quiescência/autorrenovação. As CTH podem ser classificadas em dois grupos: células que reconstituem a hemopoese em longo prazo (LT-CTH) e curto prazo (CT-CTH). Investigamos, neste trabalho, os efeitos da desnutrição proteica (DP) no tecido ósseo e a participação do nicho endosteal na sinalização osteoblasto-CTH. Para tanto, utilizamos camundongos submetidos à DP induzida pelo consumo de ração hipoproteica. Os animais desnutridos apresentaram pancitopenia e diminuição nas concentrações de proteínas séricas e albumina. Quantificamos as CTH por citometria de fluxo e verificamos que os desnutridos apresentaram menor porcentagem de LT-CTH, CT-CTH e de progenitores multipotentes (PMP). Avaliamos a expressão das proteínas CD44, CXCR4, Tie-2 e Notch-1 nas LT-CTH. Observamos diminuição da expressão da proteína CD44 nos desnutridos. Isolamos as células LT-CTH por cell sorting e avaliamos a expressão gênica de CD44, CXCR4 e NOTCH-1. Verificamos que os desnutridos apresentaram menor expressão de CD44. Em relação ao ciclo celular, verificamos maior quantidade de LT-CTH nas fases G0/G1. Caracterizamos as alterações do tecido ósseo femoral, in vivo. Observamos diminuição da densidade mineral óssea e da densidade medular nos desnutridos. A desnutrição acarretou diminuição da área média das seções transversais, do perímetro do periósteo e do endósteo na cortical do fêmur dos animais. E na região trabecular, verificou-se diminuição da razão entre volume ósseo e volume da amostra e do número de trabéculas, aumento da distância entre as trabéculas e prevalência de trabéculas ósseas em formato cilíndrico. Avaliamos a expressão de colágeno, osteonectina (ON) e osteocalcina (OC) por imuno-histoquímica, e de osteopontina (OPN) por imunofluorescência no fêmur e verificamos diminuição da marcação para OPN, colágeno tipo I, OC e ON nos desnutridos. Evidenciamos, pela técnica do Picrosírius, desorganização na distribuição das fibras colágenas e presença de fibras tipo III nos fêmures dos desnutridos, além de maior número de osteoclastos evidenciados pela reação da fosfatase ácida tartarato resistente. Os osteoblastos da região femoral foram isolados por depleção imunomagnética, imunofenotipados por citometria de fluxo e cultivados em meio de indução osteogênica. Observamos menor positividade para fosfatase alcalina e vermelho de alizarina nas culturas dos osteoblastos dos desnutridos. Avaliamos, por Western Blotting, a expressão de colágeno tipo I, OPN, osterix, Runx2, RANKL e osteoprotegerina (OPG), e, por PCR em tempo real, a expressão de COL1A2, SP7, CXCL12, ANGPT1, SPP1, JAG2 e CDH2 nos osteoblastos isolados. Verificamos que a desnutrição acarretou diminuição da expressão proteica de osterix e OPG e menor expressão gênica de ANGPT1. Avaliamos a proliferação das células LSK (Lin-Sca1+c-Kit+) utilizando ensaio de CFSE (carboxifluoresceína succinimidil ester). Foi realizada cocultura de células LSK e osteoblastos (MC3T3-E1) na presença e ausência de anti-CD44. Após uma semana, verificamos menor proliferação das LSK dos desnutridos. O bloqueio de CD44 das LSK do grupo controle diminuiu a proliferação destas em três gerações. Entretanto, nos desnutridos, esse bloqueio não afetou a proliferação. Concluímos que a DP promoveu alterações no tecido ósseo e nas CTH. Entretanto, não podemos afirmar que as alterações observadas no sistema hemopoético foram decorrentes de alterações exclusivas do nicho endosteal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although photodynamic therapy have been used as a useful tool over the past 30 years in oncology, few clinical trials have been conducted in dentistry. Photodynamic therapy (PDT) uses non - toxic photosensitizers and selective which are administered in target cells followed by local application of visible light, producing reactive oxygen species capable of causing cell death by apoptosis or necrosis, injured the local vasculature, and exert important effects on the im mune system. New generations of photosensitizing agents, such as nanoparticulate phthalocyanines, has shown excellent results in antitumor and antibacterial activity . In this context, the present work constitutes the first clinical protocol of local appli cation of nanoemulsion chloro - aluminum phthalocyanine (AlClFc) followed by irradiation in human gingiva, and analyzed descriptively and comparatively , by means of immunohistochemistry , the expression of RANK , RANKL , OPG and VEGF in a split - mouth model . Eight healthy volunteers with clinical indication for extraction were included in the study . Seven days before the extraction, was injected in the gingiva of participants, 5 μ M of nanoemulsion AlClFc followed by irra diation with diode laser (660nm , 7 J/cm2 ), the contralateral side was used as control. Tissue specimens were removed seven days after the TFD is performed. Tissues sample were divided into two groups (test and con trol groups) for histological and immunohistochemical analysis. Patients were monitored at days, 0, 7, 14 and 30 to assess adverse effects of the therapy. Vascular alterations were seen in gingival samples that received PDT. Areas of edema and vascular con gestion, and intense vascularization were viewed . Additionally, dystrophic calcification in subepithelial region were observed in the test group. The results showed a similar pattern of immunostaining scores of RANK, RANKL and VEGF between the test and co ntrol groups, with no statistically significant difference (p = 0.317, p = 0.777, p = 0 .814, respectively). RANK and RANKL exhibited weak or absent immunostaining in most specimens analyzed. There was n o immunostaining for OPG. VEGF showed moderate to stro ng immunostaining in specimens from the test group. In addition, the clinical study showed that therapy was well tolerated by all patients. Adverse effects were short - time and completely reversible. Taken together, the results presented in this study showe d that PDT mediated by nanoemulsion containing AlClPc is safe for clinical application in gingival tissue and suggests that a strong immunostaining for VEGF after therapy .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH) are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i) osteoprotegerin (OPG) and osteopontine (OPN) mRNA expression in the maxilla and ii) myoglobin (Mb) mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g) were divided into thyroidectomized (Tx) and sham-operated (SO) groups (N = 24/group) treated with T3 or saline (0.9%) for 15 days. Thyroidectomy increased OPG (~40%) and OPN (~75%) mRNA expression, while T3 treatment reduced OPG (~40%) and OPN (~75%) in Tx, and both (~50%) in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para avaliar a influência da suplementação com selênio e vitamina E sobre o perfil proteico e metabolismo oxidativo de cordeiros infectados experimentalmente pelo Haemonchus contortus, trinta cordeiros fêmeas foram distribuídos em quatro grupos: G1 (n=10): animais infectados; G2 (n=10): infectados e suplementados; G3 (n=5): controle; e G4 (n=5): não infectados e suplementados. Os grupos 1 e 2 receberam 500 larvas de H. contortus (L3), via oral, por um período de 20 dias, com intervalo de dois dias entre as doses. A suplementação nos grupos 2 e 4 foi realizada no dia zero, com 0,1mg kg-1 de Selenito de sódio (1,67%) e com 2.000UI de vitamina E por via intramuscular (IM). Somente a vitamina E foi reaplicada no dia 30. As coletas de sangue para determinação do perfil proteico (proteína total, albumina, alfa, beta e gamaglobulina) e metabolismo oxidativo (espécies reativas ao ácido tiobarbitúrico-TBARS e a enzima glutationa peroxidase (GSPX) foram realizadas nos dias zero, 20, 30, 45, 60 e 80. OPG foi quantificado nos dias 0, 20 ,45 e 80. Em relação aos valores de proteínas totais, albumina, betaglobulina e gamaglobulina, as principais diferenças foram observadas quando os grupos parasitados foram comparados com o grupo somente suplementado; e este manteve valores mais elevados. Conclui-se que não há influência da suplementação com selênio e vitamina E no perfil proteico e metabolismo oxidativo quando os cordeiros se encontram severamente parasitados por H.contortus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggressive periodontitis is characterized by a rapid and severe periodontal destruction in young systemically healthy subjects. A greater prevalence is reported in Africans and African descendent groups than in Caucasians and Hispanics. We first fine mapped the interval 1q24.2 to 1q31.3 suggested as containing an aggressive periodontitis locus. Three hundred and eighty-nine subjects from 55 pedigrees were studied. Saliva samples were collected from all subjects, and DNA was extracted. Twenty-one single nucleotide polymorphisms were selected and analyzed by standard polymerase chain reaction using TaqMan chemistry. Non-parametric linkage and transmission distortion analyses were performed. Although linkage results were negative, statistically significant association between two markers, rs1935881 and rs1342913, in the FAM5C gene and aggressive periodontitis (p = 0.03) was found. Haplotype analysis showed an association between aggressive periodontitis and the haplotype A-G (rs1935881-rs1342913; p = 0.009). Sequence analysis of FAM5C coding regions did not disclose any mutations, but two variants in conserved intronic regions of FAM5C, rs57694932 and rs10494634, were found. However, these two variants are not associated with aggressive periodontitis. Secondly, we investigated the pattern of FAM5C expression in aggressive periodontitis lesions and its possible correlations with inflammatory/immunological factors and pathogens commonly associated with periodontal diseases. FAM5C mRNA expression was significantly higher in diseased versus healthy sites, and was found to be correlated to the IL-1 beta, IL-17A, IL-4 and RANKL mRNA levels. No correlations were found between FAM5C levels and the presence and load of red complex periodontopathogens or Aggregatibacter actinomycetemcomitans. This study provides evidence that FAM5C contributes to aggressive periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Becker LE, Koleganova N, Piecha G, Noronha IL, Zeier M, Geldyyev A, Kokeny G, Ritz E, Gross ML. Effect of paricalcitol and calcitriol on aortic wall remodeling in uninephrectomized ApoE knockout mice. Am J Physiol Renal Physiol 300: F772-F782, 2011. First published December 15, 2010; doi:10.1152/ajprenal.00042.2010.-Despitean only minor reduction in the glomerular filtration rate, uninephrectomy (UNX) markedly accelerates the rate of growth of atherosclerotic plaques in ApoE-/- mice. It has been suggested that vitamin D receptor (VDR) activation exerts an antiproliferative effect on vascular smooth muscle cells, but the side effects may limit its use. To assess a potentially different spectrum of actions, we compared the effects of paricalcitol and calcitriol on remodeling and calcification of the aortic wall in sham-operated and UNX ApoE-/- mice on a diet with normal cholesterol content. Sham-operated and UNX mice were randomly allotted to treatment with solvent, calcitriol (0.03 mu g/kg) or paricalcitol (0.1 mu g/kg) 5 times/wk intraperitoneally for 10 wk. Semithin (0.6 mu m) sections of the aorta were analyzed by 1) morphometry, 2) immunohistochemistry, and 3) Western blotting of key proteins involved in vascular calcification and growth. Compared with sham-operated animals (5.6 +/- 0.24), the wall-to-lumen ratio (x100) of the aorta was significantly higher in solvent-and calcitriol-treated UNX animals (6.64 +/- 0.27 and 7.17 +/- 0.81, respectively, P < 0.05), but not in paricalcitol-treated UNX (6.1 5 +/- 0.32). Similar differences were seen with respect to maximal plaque height. Expression of transforming growth factor (TGF)-beta 1 in aortic intima/plaque was also significantly higher in UNX solvent and UNX calcitriol compared with sham-operated and UNX paricalcitol animals. Treatment with both paricalcitol and calcitriol caused significant elevation of VDR expression in the aorta. While at the dose employed paricalcitol significantly reduced TGF-beta expression in plaques, calcitriol in contrast caused significant vascular calcification and elevated expression of related proteins (BMP2, RANKL, and Runx2).