992 resultados para Quantitative traits
Resumo:
Individuals need to adapt to their local environment in order to survive. When selection pressures differ in local populations, polymorphism can evolve. Colour polymorphism is one of the most obvious polymorphisms since it is readily observable. Different sources of colouration exist, but melanin-based colouration is one of the most common in birds. The melanocortin system produces this colouration and because the melanocortin system has pleiotropic effects on behavioural and physiological traits, it is a good candidate to be an underlying mechanism to explain the maintenance of colour polymorphism. In this thesis I studied three different raptors which all display melanin-based colouration; barn owls (Tyto alba), tawny owls (Strix aluco) and Eurasian kestrels (Falco tinnunculus). The main question was if there was a relationship between melanin-based colouration and individual behavioural differences. The underlying hypothesis is that colour could be a signal of certain adaptive traits. Our goal was to find evolutionary explanations for the persistence of colour polymorphism. I found that nestling kestrels and barn owls differ in anti-predatory behaviour, with respect to their melanic colouration (chapters 1 and 2). Darker individuals show less reaction to human handling, but in kestrels aggression and colouration are related in opposite ways than in barn owls. More reddish barn owls travel greater distances in natal dispersal and this behaviour is repeatable between parents and same sex offspring (chapter 3). Dark reddish tawny owls defend their nests more intensely against intruders and appear to suffer less from nest predation (chapter 4). Finally I show that polymorphism in the Melanocortin 1 receptor gene (MC1R), which is strongly correlated with reddish colouration in the barn owl, is related to natal dispersal distance, providing a first indication for a genetic basis of the relation between this behaviour and colouration (chapter 5). My results demonstrate a clear link between melanin-based colouration and animal personality traits. I demonstrated this relation in three different species, which shows there is most likely a general underlying mechanism responsible. Different predation pressures might have shaped the reactions to predation, but also differences in sex-related colouration. Male-like and female-like colouration might signal more or less aggressive behaviour. Fluctuating environmental conditions might cause different individual strategies to produce equal reproductive success. The melanocortin system with its pleiotropic effects might be an underlying mechanism, as suggested by the results from the genetic polymorphism, the similar results found in these three species and by the similar relations reported in other species. This thesis demonstrates that colouration and individual differences are correlated and it provides the first glimpse of an underlying system. We can now conduct a more directed search for underlying mechanisms and evolutionary explanations with the use of quantitative genetic methods.
Resumo:
The evolution of senescence (the physiological decline of organisms with age) poses an apparent paradox because it represents a failure of natural selection to increase the survival and reproductive performance of organisms. The paradox can be resolved if natural selection becomes less effective with age, because the death of postreproductive individuals should have diminished effects on Darwinian fitness [1, 2]. A substantial body of empirical work is consistent with this prediction for animals, which transmit their genes to progeny via an immortal germline. However, such evidence is still lacking in plants, which lack a germline and whose reproduction is diffuse and modular across the soma. Here, we provide experimental evidence for a genetic basis of senescence in the short-lived perennial plant Silene latifolia. Our pedigree-based analysis revealed a marked increase with age in the additive genetic variance of traits closely associated with fitness. This result thus extends to plants the quantitative genetic support for the evolutionary theory of senescence.
Resumo:
Plants respond to herbivore attack through a complex and variable system of defense, involving different physical barriers, toxic chemicals, and recruitment of natural enemies. To fully understand the relative role of each type of defense, their synergisms, redundancies, or antagonisms between traits, a variety of methods of enquiry, commonly used in plant physiology and ecology, have been employed. By overexpressing or silencing genes of interest, it is possible to understand the specific role of a particular defensive molecule or mode of action. We argue, however, that these types of experiments alone are not enough to holistically understand the physiological as well as ecological role of plant defenses. We thus advocate for the use of a combination of methods, including genetic modification, quantitative genetics, and phylogenetically controlled comparative studies.
Resumo:
High blood pressure (BP) is more prevalent and contributes to more severe manifestations of cardiovascular disease (CVD) in African Americans than in any other United States ethnic group. Several small African-ancestry (AA) BP genome-wide association studies (GWASs) have been published, but their findings have failed to replicate to date. We report on a large AA BP GWAS meta-analysis that includes 29,378 individuals from 19 discovery cohorts and subsequent replication in additional samples of AA (n = 10,386), European ancestry (EA) (n = 69,395), and East Asian ancestry (n = 19,601). Five loci (EVX1-HOXA, ULK4, RSPO3, PLEKHG1, and SOX6) reached genome-wide significance (p < 1.0 × 10(-8)) for either systolic or diastolic BP in a transethnic meta-analysis after correction for multiple testing. Three of these BP loci (EVX1-HOXA, RSPO3, and PLEKHG1) lack previous associations with BP. We also identified one independent signal in a known BP locus (SOX6) and provide evidence for fine mapping in four additional validated BP loci. We also demonstrate that validated EA BP GWAS loci, considered jointly, show significant effects in AA samples. Consequently, these findings suggest that BP loci might have universal effects across studied populations, demonstrating that multiethnic samples are an essential component in identifying, fine mapping, and understanding their trait variability.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Resumo:
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Resumo:
Les pressions écologiques peuvent varier tant en nature qu'en intensité dans le temps et l'espace. C'est pourquoi, un phénotype unique ne peut pas forcément conférer la meilleure valeur sélective. La plasticité phénotypique peut être un moyen de s'accommoder de cette situation, en augmentant globalement la tolérance aux changements environnementaux. Comme pour tout trait de caractère, une variation génétique doit persister pour qu'évoluent les traits plastiques dans une population donnée. Cependant, les pressions extérieures peuvent affecter l'héritabilité, et la direction de ces changements peut dépendre du caractère en question, de l'espèce mais aussi du type de stress. Dans la présente thèse, nous avons cherché à élucider les effets des pressions pathogéniques sur les phénotypes et la génétique quantitative de plusieurs traits plastiques chez les embryons de deux salmonidés, la palée (Coregonus palaea), et la truite de rivière (Salmo trutta). Les salmonidés se prêtent à de telles études du fait de leur extraordinaire variabilité morphologique, comportementale et des traits d'histoire de vie. Par ailleurs, avec le déclin des salmonidés dans le monde, il est important de savoir combien la variabilité génétique persiste dans les normes de réaction afin d'aider à prédire leur capacité à répondre aux changements de leur milieu. Nous avons observé qu'une augmentation de la croissance des communautés microbiennes symbiotiques entraînait une mortalité accrue et une éclosion précoce chez la palée, et dévoilait la variance génétique additive pour ces deux caractères (Chapitres 1-2). Bien qu'aucune variation génétique n'ait été trouvée pour les normes de réaction, nous avons observé une variabilité de la plasticité d'éclosion. Néanmoins, on a trouvé que les temps d'éclosion étaient corrélés entre les environnements, ce qui pourrait limiter l'évolution de la norme de réaction. Le temps d'éclosion des embryons est lié à la taille des géniteurs mâles, ce qui indique des effets pléiotropiques. Dans le Chapitre 3, nous avons montré qu'une interaction triple entre la souche bactérienne {Pseudomonas fluorescens}, l'état de dévelopement de l'hôte ainsi que ses gènes ont une influence sur la mortalité, le temps d'éclosion et la taille des alevins de la palée. Nous avons démontré qu'une variation génétique subsistait généralement dans les normes de réaction des temps d'éclosion, mais rarement pour la taille des alevins, et jamais pour la mortalité. Dans le même temps, nous avons exhibé que des corrélations entre environnements dépendaient des caractères phénotypiques, mais contrairement au Chapitre 2, nous n'avons pas trouvé de preuve de corrélations transgénérationnelles. Le Chapitre 4 complète le chapitre précédent, en se plaçant du point de vue moléculaire, et décrit comment le traitement d'embryons avec P. fluorescens s'est traduit par une régulation négative d'expression du CMH-I indépendemment de la souche bactérienne. Nous avons non seulement trouvé une variation génétique des caractères phénotypiques moyens, mais aussi de la plasticité. Les deux derniers chapitres traitent de l'investigation, chez la truite de rivière, des différences spécifiques entre populations pour des normes de réaction induites par les pathogènes. Dans le Chapitre 5, nous avons illustré que le métissage entre des populations génétiquement distinctes n'affectait en rien la hauteur ou la forme des normes de réaction d'un trait précoce d'histoire de vie suite au traitement pathogénique. De surcroît, en dépit de l'éclosion tardive et de la réduction de la taille des alevins, le traitement n'a pas modifié la variation héritable des traits de caractère. D'autre part, dans le Chapitre 6, nous avons démontré que le traitement d'embryons avec des stimuli contenus dans l'eau de conspécifiques infectés a entraîné des réponses propre à chaque population en terme de temps d'éclosion ; néanmoins, nous avons observé peu de variabilité génétique des normes de réaction pour ce temps d'éclosion au sein des populations. - Ecological stressors can vary in type and intensity over space and time, and as such, a single phenotype may not confer the highest fitness. Phenotypic plasticity can act as a means to accommodate this situation, increasing overall tolerance to environmental change. As with any trait, for plastic traits to evolve in a population, genetic variation must persist. However, environmental stress can alter trait heritability, and the direction of this shift can be trait, species, and stressor-dependent. In this thesis, we sought to understand the effects of pathogen stressors on the phenotypes and genetic architecture of several plastic traits in the embryos of two salmonids, the whitefish (Coregonus palaea), and the brown trout (Salmo trutta). Salmonids lend themselves to such studies because their extraordinary variability in morphological, behavioral, and life-history traits. Also, with declines in salmonids worldwide, knowing how much genetic variability persists in reaction norms may help predict their ability to respond to environmental change. We found that increasing growth of symbiotic microbial communities increased mortality and induced hatching in whitefish, and released additive genetic variance for both traits (Chapters 1-2). While no genetic variation was found for survival reaction norms, we did find variability in hatching plasticity. Nevertheless, hatching time was correlated across environments, which could constrain evolution of the reaction norm. Hatching time in the induced environment was also correlated to sire size, indicating pleiotropic effects. In Chapter 3 we report that a three-way interaction between bacterial strain (Pseudomonas fluorescens), host developmental stage, and host genetics impacted mortality, hatching time, and hatchling size in whitefish. We also showed that genetic variation generally persisted in hatching age reaction norms, but rarely for hatchling length, and never for mortality. At the same time, we demonstrated that cross-environmental correlations were trait-dependent, and unlike Chapter 2, we found no evidence of cross-generational correlations. Chapter 4 expands on the previous chapter, moving to the molecular level, and describes how treatment of embryos with P. fluorescens resulted in strain-independent downregulation of MHC class I. Genetic variation was evident not only in trait means, but also in plasticity. In the last two chapters, we investigated population level differences in pathogen- induced reaction norms in brown trout. In Chapter 5, we found that interbreeding between genetically distinct populations did not affect the elevation or shapes of the reaction norms of early life-history traits after pathogen challenge. Moreover, despite delaying hatching and reducing larval length, treatment produced no discernable shifts in heritable variation in traits. On the other hand, in Chapter 6, we found that treatment of embryos with water-borne cues from infected conspecifics elicited population-specific responses in terms of hatching time; however, we found little evidence of genetic variability in hatching reaction norms within populations. We have made considerable progress in understanding how pathogen stressors affect various early life-history traits in salmonid embryos. We have demonstrated that the effect of a particular stressor on heritable variation in these traits can vary according to the trait and species under consideration, in addition to the developmental stage of the host. Moreover, we found evidence of genetic variability in some, but not all reaction norms in whitefish and brown trout.
Resumo:
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Resumo:
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg-to-adult survival and developmental rate on a low-quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low-quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits.
Resumo:
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.
Resumo:
BACKGROUND AND AIMS: Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST-FST comparison). METHODS: A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h(2)) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an 'animal model' fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance. KEY RESULTS: Serotiny showed a significant narrow-sense heritability (h(2)) of 0·20 (credible interval 0·09-0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites. CONCLUSIONS: Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.
Resumo:
Abstract: To understand the processes of evolution, biologists are interested in the ability of a population to respond to natural or artificial selection. The amount of genetic variation is often viewed as the main factor allowing a species to answer to selection. Many theories have thus focused on the maintenance of genetic variability. Ecologists and population geneticists have long-suspected that the structure of the environment is connected to the maintenance of diversity. Theorists have shown that diversity can be permanently and stably maintained in temporal and spatial varying environment in certain conditions. Moreover, varying environments have been also theoretically demonstrated to cause the evolution of divergent life history strategies in the different niches constituting the environment. Although there is a huge number of theoretical studies selection and on life history evolution in heterogeneous environments, there is a clear lack of empirical studies. The purpose of this thesis was to. empirically study the evolutionary consequences of a heterogeneous environment in a freshwater snail Galba truncatula. Indeed, G. truncatula lives in two habitat types according the water availability. First, it can be found in streams or ponds which never completely dry out: a permanent habitat. Second, G. truncatula can be found in pools that freeze during winter and dry during summer: a temporary habitat. Using a common garden approach, we empirically demonstrated local adaptation of G. truncatula to temporary and permanent habitats. We used at first a comparison of molecular (FST) vs. quantitative (QST) genetic differentiation between temporary and permanent habitats. To confirm the pattern QST> FST between habitats suggesting local adaptation, we then tested the desiccation resistance of individuals from temporary and permanent habitats. This study confirmed that drought resistance seemed to be the main factor selected between habitats, and life history traits linked to the desiccation resistance were thus found divergent between habitats. However, despite this evidence of selection acting on mean values of traits between habitats, drift was suggested to be the main factor responsible of variation in variances-covariances between populations. At last, we found life history traits variation of individuals in a heterogeneous environment varying in parasite prevalence. This thesis empirically demonstrated the importance of heterogeneous environments in local adaptation and life history evolution and suggested that more experimental studies are needed to investigate this topic. Résumé: Les biologistes se sont depuis toujours intéressés en l'aptitude d'une population à répondre à la sélection naturelle. Cette réponse dépend de la quantité de variabilité génétique présente dans cette population. Plus particulièrement, les théoriciens se sont penchés sur la question du maintient de la variabilité génétique au sein d'environnements hétérogènes. Ils ont alors démontré que, sous certaines conditions, la diversité génétique peut se maintenir de manière stable et permanente dans des environnements variant au niveau spatial et temporel. De plus, ces environments variables ont été démontrés comme responsable de divergence de traits d'histoire de vie au sein des différentes niches constituant l'environnement. Cependant, malgré ce nombre important d'études théoriques portant sur la sélection et l'évolution des traits d'histoire de vie en environnement hétérogène, les études empiriques sont plus rares. Le but de cette thèse était donc d'étudier les conséquences évolutives d'un environnement hétérogène chez un esgarcot d'eau douce Galba truncatula. En effet, G. truncatula est trouvé dans deux types d'habitats qui diffèrent par leur niveau d'eau. Le premier, l'habitat temporaire, est constitué de flaques d'eau qui peuvent s'assécher pendant l'été et geler pendant l'hiver. Le second, l'habitat permanent, correspond à des marres ou à des ruisseaux qui ont un niveau d'eau constant durant toute l'année. Utilisant une approche expérimentale de type "jardin commun", nous avons démontré l'adaptation locale des individus à leur type d'habitat, permanent ou temporaire. Nous avons utilisé l'approche Fsr/QsT qui compare la différentiation génétique moléculaire avec la différentiation génétique quantitative entre les 2 habitats. Le phénomène d'adapation locale démontré par QsT > FsT, a été testé experimentalement en mesurant la résistance à la dessiccation d'individus d'habitat temporaire et permanent. Cette étude confirma que la résistance à la sécheresse a été sélectionné entre habitats et que les traits responsables de cette resistance sont différents entre habitats. Cependant si la sélection agit sur la valeur moyenne des traits entre habitats, la dérive génétique semble être le responsable majeur de la différence de variances-covariances entre populations. Pour finir, une variation de traits d'histoire de vie a été trouvée au sein d'un environnement hétérogène constitué de populations variants au niveau de leur taux de parasitisme. Pour conclure, cette thèse a donc démontré l'importance d'un environnement hétérogène sur l'adaptation locale et l'évolution des traits d'histoire de vie et suggère que plus d'études empiriques sur le sujet sont nécessaires.
Resumo:
BACKGROUND: Selection for increasing intramuscular fat content would definitively improve the palatability and juiciness of pig meat as well as the sensorial and organoleptic properties of cured products. However, evidences obtained in human and model organisms suggest that high levels of intramuscular fat might alter muscle lipid and carbohydrate metabolism. We have analysed this issue by determining the transcriptomic profiles of Duroc pigs with divergent phenotypes for 13 fatness traits. The strong aptitude of Duroc pigs to have high levels of intramuscular fat makes them a valuable model to analyse the mechanisms that regulate muscle lipid metabolism, an issue with evident implications in the elucidation of the genetic basis of human metabolic diseases such as obesity and insulin resistance. RESULTS: Muscle gene expression profiles of 68 Duroc pigs belonging to two groups (HIGH and LOW) with extreme phenotypes for lipid deposition and composition traits have been analysed. Microarray and quantitative PCR analysis showed that genes related to fatty acid uptake, lipogenesis and triacylglycerol synthesis were upregulated in the muscle tissue of HIGH pigs, which are fatter and have higher amounts of intramuscular fat than their LOW counterparts. Paradoxically, lipolytic genes also showed increased mRNA levels in the HIGH group suggesting the existence of a cycle where triacylglycerols are continuously synthesized and degraded. Several genes related to the insulin-signalling pathway, that is usually impaired in obese humans, were also upregulated. Finally, genes related to antigen-processing and presentation were downregulated in the HIGH group. CONCLUSION: Our data suggest that selection for increasing intramuscular fat content in pigs would lead to a shift but not a disruption of the metabolic homeostasis of muscle cells. Future studies on the post-translational changes affecting protein activity or expression as well as information about protein location within the cell would be needed to to elucidate the effects of lipid deposition on muscle metabolism in pigs.
Resumo:
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Resumo:
Reproductive traits play a key role in pig production in order to reduce costs and increase economic returns. Among others, gene expression analyses represent a useful approach to study genetic mechanisms underlying reproductive traits in pigs. The application of reverse-transcription quantitative PCR requires the selection of appropriate reference genes, whose expression levels should not be affected by the experimental conditions, especially when comparing gene expression across different physiological stages.