992 resultados para Quantitative reconstruction
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.
Resumo:
a presentation about immersive visualised simulation systems, image analysis and GPGPU Techonology
Resumo:
This paper aimed to assess the magnitude of sewage pollution in an urban lake in Dhaka, Bangladesh by using Quantitative PCR (qPCR) of sewage-associated Bacteroides HF183 markers. PCR was also used for the quantitative detection of ruminant wastewater-associated CF128 markers along with the enumeration of traditional fecal indicator bacteria, namely, enterococci. The number of enterococci in lake water samples ranged from 1.1 x 104 to 1.9 x 105 CFU/100 ml of water. From the 20 water samples tested, 14 (70%) and 7 (35%) were PCR positive for the HF183 and CF128 markers, respectively. The numbers of the HF183 and CF128 markers in lake water samples were 3.9 x 104 to 6.3 × 107 and 9.3 x 103 to 6.3 x 105 genomic units (GU)/100 ml of water, respectively. The high numbers of enterococci and the HF183 markers indicate sewage pollution and potential health risks to those who use the lake water for non-potable purposes such as bathing and washing clothes. This is the first study that investigated the presence of microbial source tracking (MST) markers in Dhaka, Bangladesh where diarrhoeal diseases is one of the major causes of childhood mortality. The molecular assay as used in this study can provide valuable information on the extent of sewage pollution, thus facilitating the development of robust strategies to minimise potential health risks.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analysed for the zoonotic bacterial and protozoan pathogen using real-time binary PCR and quantitative PCR (qPCR). Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from potable and non-potable uses of roof-harvested rainwater. Of the 214 samples tested, 10.7%, 9.8%, and 5.6%, and 0.4% samples were positive for Salmonella invA, Giardia lamblia β-giardin , Legionella pneumophila mip, and Campylobacter jejuni mapA genes. Cryptosporidium parvum could not be detected. The estimated numbers of viable Salmonella spp., G. lamblia β-giradin, and L. pneumophila genes ranged from 1.6 × 101 to 9.5 × 101 cells, 1.4 × 10-1 to 9.0 × 10-1 cysts, and 1.5 × 101 to 4.3 × 101 per 1000 ml of water, respectively. Six risk scenarios were considered from exposure to Salmonella spp., G. lamblia and L. pneumophila. For Salmonella spp., and G. lamblia, these scenarios were: (1) liquid ingestion due to drinking of rainwater on a daily basis (2) accidental liquid ingestion due to garden hosing twice a week (3) aerosol ingestion due to showering on a daily basis, and (4) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were: (5) aerosol inhalation due to showering on a daily basis, and (6) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeds this threshold value, and indicates that if undisinfected rainwater were ingested by drinking, then the gastrointestinal diseases of Salmonellosis and Giardiasis is expected to range from 5.0 × 100 to 2.8 × 101 (Salmonellosis) and 1.0 × 101 to 6.4 × 101 (Giardiasis) cases per 10,000 persons per year, respectively. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for potable use.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
The Government of Indonesia (GoI) increasingly relies on the private sector financing to build and operate infrastructures through public private partnership (PPP) schemes. However, PPP does not automatically provide the solution for the financing scheme due to value for money (VFM) issues. The procurement authority must show whether a PPP proposal is the optimal solution that provides best VFM outcome. The paper presents a literature review of comparing quantitative VFM methodology for PPP infrastructure project procurement in Indonesia and Australia. Public Sector Comparator (PSC) is used to assess the potential project VFM quantitatively in Australia. In Indonesia, the PSC has not been applied, where the PPP procurement authority tends to utilize a common project evaluation method that ignores the issues of risk. Unlike the conventional price bid evaluation, the PSC enables a financial comparison including costs/gains and risks. Since the construction of PSC is primarily on risk management approach, it can facilitate risk negotiation processes between the involved parties. The study indicates that the quantitative VFM methodology of PSC is potentially applicable in Indonesia for water supply sector. Various supporting regulations are available that emphasize the importance of VFM and risk management in infrastructure investment. However, the study also reveals a number of challenges that need to be anticipated, such as the need of a more comprehensive PPP policy at both central and local government level, a more specific legal instrument for bidding evaluation method and the issue of institutional capacity development in PPP Units at the local level.
Resumo:
Business processes have emerged as a well-respected variable in the design of successful corporations. However, unlike other key managerial variables, such as products and services, customers and employees, physical or digital assets, the conceptualization and management of business processes are in many respects in their infancy. In this book, Jan Recker investigates the notion of quality of business process modeling grammars. His evaluation is based on an ontological-, qualitative-, and quantitative analysis, applied to BPMN, a widely-used business process modeling grammar. His results reveal the ontological shortcomings of BPMN and how these manifest themselves in actual process modeling practice, as well as how they influence the usage behavior of modeling practitioners. More generally, his book constitutes a landmark for empirical technology assessment, analyzing the way in which design flaws in technology influence usage behavior.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
Modern statistical models and computational methods can now incorporate uncertainty of the parameters used in Quantitative Microbial Risk Assessments (QMRA). Many QMRAs use Monte Carlo methods, but work from fixed estimates for means, variances and other parameters. We illustrate the ease of estimating all parameters contemporaneously with the risk assessment, incorporating all the parameter uncertainty arising from the experiments from which these parameters are estimated. A Bayesian approach is adopted, using Markov Chain Monte Carlo Gibbs sampling (MCMC) via the freely available software, WinBUGS. The method and its ease of implementation are illustrated by a case study that involves incorporating three disparate datasets into an MCMC framework. The probabilities of infection when the uncertainty associated with parameter estimation is incorporated into a QMRA are shown to be considerably more variable over various dose ranges than the analogous probabilities obtained when constants from the literature are simply ‘plugged’ in as is done in most QMRAs. Neglecting these sources of uncertainty may lead to erroneous decisions for public health and risk management.