601 resultados para Pyruvate-ferredoxin Oxidoreductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonatal screening for congenital adrenal hyperplasia (CAH) is useful in diagnosing salt wasting form (SW). However, there are difficulties in interpreting positive results in asymptomatic newborns. The main objective is to analyze genotyping as a confirmatory test in children with neonatal positive results. Patients comprised 23 CAH children and 19 asymptomatic infants with persistently elevated 17-hydroxyprogesterone (17OHP) levels. CYP21A2 gene was sequenced and genotypes were grouped according to the enzymatic activity of the less severe allele: A1 null, A2 < 2%, B 3-7%, C > 20%. Twenty-one children with neonatal symptoms and/or 17OHP levels > 80 ng/ml carried A genotypes, except two virilized girls (17OHP < 50 ng/ml) without CAH genotypes. Patients carrying SW genotypes (A1, A2) and low serum sodium levels presented with neonatal 17OHP > 200 ng/ml. Three asymptomatic boys carried simple virilizing genotypes (A2 and B): in two, the symptoms began at 18 months; another two asymptomatic boys had nonclassical genotypes (C). The remaining 14 patients did not present CAH genotypes, and their 17OHP levels were normalized by 14 months of age. Molecular analysis is useful as a confirmatory test of CAH, mainly in boys. It can predict clinical course, identify false-positives and help distinguish between clinical forms of CAH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term disorders of sex development (DSD) includes congenital conditions in which development of chromosomal, gonadal or anatomical sex is atypical. Mutations in genes present in X, Y or autosomal chromosomes can cause abnormalities of testis determination or disorders of sex differentiation leading to 46,XY DSD. Detailed clinical phenotypes allow the identification of new factors that can alter the expression or function of mutated proteins helping to understand new undisclosed biochemical pathways. In this review we present an update on 46,XY DSD aetiology, diagnosis and treatment based on extensive review of the literature and our three decades of experience with these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: 21-Hydroxylase deficiency (21OHD) is caused by CYP21A2 gene mutations disrupting the adrenal 21-hydroxylase, P450c21. CYP21A2 mutations generally correlate well with the 21OHD phenotype, but some children with severe CYP21A2 mutations have residual 21-hydroxylase activity. Some hepatic P450 enzymes can 21-hydroxylate progesterone, but their physiological relevance in modifying 21OHD is not known. Objective: Wedetermined the ability of CYP2C19 and CYP3A4 to 21-hydroxylate progesterone and 17-hydroxyprogesterone (17OHP), determined the impact of the common P450 oxidoreductase (POR) variant A503V on these activities, and examined correlations between CYP2C19 variants and phenotype in patients with 21OHD. Methods: Bacterially expressed, N-terminally modified, C-His-tagged human P450c21, CYP2C19, and CYP3A4 were combined with bacterially expressed wild-type and A503V POR. The 21-hydroxylation of radiolabeled progesterone and 17OHP was assessed, and the Michaelis constant (Km) and maximum velocity (Vmax) of the reactions were measured. CYP2C19 was genotyped in 21OHD patients with genotypes predicting severe congenital adrenal hyperplasia. Results: Compared to P450c21, the Vmax/Km for 21-hydroxylation of progesterone by CYP2C19 and CYP3A4 were 17 and 10%, respectively. With both forms of POR, the Km for P450c21 was approximately 2.6 mu M, the Km for CYP2C19 was approximately 11 mu M, and the Km for CYP3A4 was approximately 110 mu M. Neither CYP2C19 nor CYP3A4 could 21-hydroxylate 17OHP. The CYP2C19 ultrametabolizer allele CYP2C19* 17 was homozygous in one of five patients with a 21OHD phenotype that was milder than predicted by the CYP21A2 genotype. Conclusions: CYP2C19 and CYP3A4 can 21-hydroxylate progesterone but not 17OHP, possibly ameliorating mineralocorticoid deficiency, but not glucocorticoid deficiency. Multiple enzymes probably contribute to extraadrenal 21-hydroxylation. (J Clin Endocrinol Metab 94: 89-95, 2009)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent; they no longer produce functional colonisation pill and they no longer secrete cholera toxin. TcpG is thus a suitable target for inhibitors that could counteract the virulence of this organism, thereby preventing the symptoms of cholera. The crystal structure of oxidized TcpG (refined at a resolution of 2.1 Angstrom) serves as a starting point for the rational design of such inhibitors. As expected, TcpG has the same fold as E. coli DsbA, with which it shares similar to 40% sequence identity. Ln addition, the characteristic surface features of DsbA are present in TcpG, supporting the notion that these features play a functional role. While the overall architecture of TcpG and DsbA is similar and the surface features are retained in TcpG, there are significant differences. For example, the kinked active site helix results from a three-residue loop in DsbA, but is caused by a proline in TcpG (making TcpG more similar to thioredoxin in this respect). Furthermore, the proposed peptide binding groove of TcpG is substantially shortened compared with that of DsbA due to a six-residue deletion. Also, the hydrophobic pocket of TcpG is more shallow and the acidic patch is much less extensive than that of E. coli DsbA. The identification of the structural and surface features that are retained or are divergent in TcpG provides a useful assessment of their functional importance in these protein folding catalysts and is an important prerequisite for the design of TcpG inhibitors. (C) 1997 Academic Press Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-wall polysaccharides from six species of red algae of the genus Callophycus were mainly galactans comprised predominantly of galactose (Gal) and 3,6-anhydrogalactose (AnGal), and were rich in pyruvate and sulfate. The Fourier Transform Infrared (FTIR) spectra of the polysaccharides superficially resembled that of alpha-carrageenan (composed of the repeating disaccharide carrabiose 2-sulfate), with major bands of absorption indicative of if-linked AnGal, axial 2-sulfate on 4-linked AnGal, and unsulfated, 3-linked Gal. The FTIR spectra of solutions of Callophycus polysaccharides in D2O-phosphate buffer displayed absorption, corresponding to the carboxylate anion of the pyruvate acetal substituent. Methylation analysis showed that 3,4,6-linked Galp (interpreted as 4,6-pyruvated, 3-linked Galp) and 2,4-linked AnGalp (interpreted as 4-linked AnGalp 2-sulfate) were the dominant links, together with significant quantities of 3-linked Galp. Proton-decoupled C-13 nuclear magnetic resonance (NMR) spectroscopy showed the polysaccharides to be composed predominantly of pyruvated carrageenans. The C-13 NMR spectra were completely assigned by a J-modulated spin-echo pulse sequence and 2D experiments employing gradient Heteronuclear Multiple Bond Correlation (HMBC), C-13/H-1 Heteronuclear Multiple Quantum Coherence (HMQC), and HMQC Total Correlation Spectroscopy (HMQC-TOCSY). The Callophycus galactans thus consist predominantly of the novel repeating disaccharide 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate and minor amounts of the alpha-carrageenan repeating unit (carrabiose 2-sulfate), and other structural variations. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the carrageenin paw inflammation model in mice were addressed, focusing on the two mechanisms described above. Experimental approach: Mechanical hyperalgesia (decrease in the nociceptive threshold) was evaluated by the electronic pressure-metre test; cytokine levels were measured by elisa and adenosine was determined by high performance liquid chromatography. Key results: Pretreatment of mice with FBP reduced hyperalgesia induced by intraplantar injection of carrageenin (up to 54%), tumour necrosis factor alpha (40%), interleukin-1 beta (46%), CXCL1 (33%), prostaglandin E(2) (41%) or dopamine (55%). However, FBP treatment did not alter carrageenin-induced cytokine (tumour necrosis factor alpha and interleukin-1 beta) or chemokine (CXCL1) production. On the other hand, the antinociceptive effect of FBP was prevented by systemic and intraplantar treatment with an adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine), suggesting that the FBP effect is mediated by peripheral adenosine acting on A(1) receptors. Giving FBP to mice increased adenosine levels in plasma, and adenosine treatment of paw inflammation presented a similar antinociceptive mechanism to that of FBP. Conclusions and implications: In addition to anti-inflammatory action, FBP also presents an antinociceptive effect upon inflammatory hyperalgesia. Its mechanism of action seems dependent on adenosine production but not on modulation of hyperalgesic cytokine/chemokine production. In turn, adenosine acts peripherally on its A(1) receptor inhibiting hyperalgesia. FBP may have possible therapeutic applications in reducing inflammatory pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphic variations of several genes associated with dietary effects and exposure to environmental carcinogens may influence susceptibility to leukemia development. The objective of the present study was to evaluate the effect of the polymorphisms of debrisoquine hydroxylase (CYP2D6), epoxide hydrolase (EPHX1), myeloperoxidase (MPO), and quinone-oxoreductase (NQO1), which have been implicated in xenobiotic metabolism, on the risk of childhood acute lymphoblastic leukemia (ALL). We evaluated the frequency of polymorphisms in the CYP2D6 (*3 and *4), EPHX1 (*2 and *3), MPO (*2), and NQO1 (*2) genes in 206 patients with childhood ALL and in 364 healthy individuals matched for age and gender from a Brazilian population separated by ethnicity (European ancestry and African ancestry), using the PCR-RFLP method. The CYP2D6 polymorphism variants were associated with an increased risk of ALL. The EPHX1, NQO1, and MPO variant genotypes were significantly associated with a reduced risk of childhood ALL. A significantly stronger protective effect is observed when the EPHX1, NQO1, and MPO variant genotypes are combined suggesting that, CYP2D6 polymorphisms may play a role in the susceptibility to pediatric ALL, whereas the EPHX1, NQO1, and MPO polymorphisms might have a protective function against leukemogenesis. Environ. Mal. Mulagen. 51:48-56, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphic variations of several genes associated with drugs and xenobiotic metabolism have been linked to the factors that predispose to the carcinogenesis process. As considerable interindividual and interethnic variation in metabolizing enzyme activity has been associated with polymorphic alleles, we evaluated the frequency of the polymorphisms of CYP2D6, EPHX1 and NQO1 genes in 361 Brazilian individuals separated by ethnicity (European and African ancestry), using the polymerase chain reaction-restriction fragment length (PCR-RFLP) method. The allele frequencies of the variants *3 and *4 for the gene CYP2D6 were 0.04 and 0.14 for white subjects and 0.03 and 0.10 for black individuals, respectively. For the both variants of the gene EPHX1, we found higher allele frequencies among white individuals compared with mulatto subjects (0.62 vs 0.54 and 0.18 vs 0.14, respectively); however, these differences were not statistically significant (p = 0.39 and 0.56, respectively). For the NQO1 gene we observed a higher frequency of the homozygous genotype among black individuals (7.9%) compared with white subjects (6.3%) (p = 0.003). The genotype frequencies were within the Hardy-Weinberg equilibrium. We concluded that the allele frequencies of CYP2D6, EPHX1 and NQO1 gene polymorphisms in this Brazilian population showed ethnic variability when compared with those observed in other populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional gel electrophoresis (2-DE) was used to better understand alterations in renal metabolism induced by fluoride (F). Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F for 60 days (n=6/group). Kidneys were collected for proteomic and histological (HE) analysis. After protein isolation, renal proteome profiles were examined using 2-DE and Colloidal Coomassie Blue staining. Protein spots with a 2-fold significant difference as detected by quantitative intensity analysis (image Master Platinum software) and t-test (p < 0.05) were excised and analyzed by MALDI-TOF MS (matrix assisted laser desorption ionization-time-of-flight mass spectrometry). The histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the 50 ppm F group. Between control vs 50 ppm F, and control vs 5 ppm F groups, 12 and 6 differentially expressed proteins were detected, respectively. Six proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated. Thus, proteomic analysis can provide new insights into the alterations in renal metabolism after F exposure, even in low doses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten years ago, an anaerobic ammonium oxidation ('anammox') process was discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community was obtained, dominated by a single deep-branching planctomycete, Candidatus Brocadia anammoxidans. Phylogenetic inventories of different wastewater treatment plants with anammox activity have suggested that at least two genera in Planctomycetales can catalyse the anammox process. Electron microscopy of the ultrastructure of B. anammoxidans has shown that several membrane-bounded compartments are present inside the cytoplasm. Hydroxylamine oxidoreductase, a key anammox enzyme, is found exclusively inside one of these compartments, tentatively named the 'anammoxosome'.