614 resultados para Purine Salvage
Resumo:
Estimates of microbial crude protein (MCP) production by ruminants, using a method based on the excretion of purine derivatives in urine, require an estimate of the excretion of endogenous purine derivatives (PD) by the animal. Current methods allocate a single value to all cattle. An experiment was carried out to compare the endogenous PD excretion in Bos taurus and high-content B. indicus ( hereafter, B. indicus) cattle. Five Holstein - Friesian ( B. taurus) and 5 Brahman (> 75% B. indicus) steers ( mean liveweight 326 +/- 3.0 kg) were used in a fasting study. Steers were fed a low-quality buffel grass (Cenchrus ciliaris; 59.4 g crude protein/kg dry matter) hay at estimated maintenance requirements for 19 days, after which hay intake was incrementally reduced for 2 days and the steers were fasted for 7 days. The excretion of PD in urine was measured daily for the last 6 days of the fasting period and the mean represented the daily endogenous PD excretion. Excretion of endogenous PD in the urine of B. indicus steers was less than half that of the B. taurus steers ( 190 mu mol/kg W-0.75. day v. 414 mu mol/kg W-0.75. day; combined s.e. 37.2 mu mol/kg W-0.75. day; P< 0.001). It was concluded that the use of a single value for endogenous PD excretion is inappropriate for use in MCP estimations and that subspecies-specific values would improve precision.
Resumo:
Development of accurate and sensitive analytical methods to measure the level of biomarkers, such as 8-oxo-guanine or its corresponding nucleoside, 8-oxo-2’-deoxyguanosine, has become imperative in the study of DNA oxidative damage in vivo. Of the most promising techniques, HPLC-MS/MS, has many attractive advantages. Like any method that employs the MS technique, its accuracy depends on the use of multiply, isotopically-labelled internal standards. This project is aimed at making available such internal standards. The first task was to synthesise the multiply, isotopically-labelled bases (M+4) guanine and (M+4) 8-oxo-guanine. Synthetic routes for both (M+4) guanine and (M+4) 8-oxo-guanine were designed and validated using the unlabelled compounds. The reaction conditions were also optimized during the “dry runs”. The amination of the 4-hydroxy-2,6-dichloropyrimidine, appeared to be very sensitive to the purity of the commercial [15]N benzylamine reagent. Having failed, after several attempts, to obtain the pure reagent from commercial suppliers, [15]N benzylamine was successfully synthesised in our laboratory and used in the first synthesis of (M+4) guanine. Although (M+4) bases can be, and indeed have been used as internal standards in the quantitative analysis of oxidative damage, they can not account for the errors that may occur during the early sample preparation stages. Therefore, internal standards in the form of nucleosides and DNA oligomers are more desirable. After evaluating a number of methods, an enzymatic transglycolization technique was adopted for the transfer of the labelled bases to give their corresponding nucleosides. Both (M+4) 2-deoxyguanosine and (M+4) 8-oxo-2’-deoxyguanosine can be purified on micro scale by HPLC. The challenge came from the purification of larger scale (>50 mg) synthesis of nucleosides. A gel filtration method was successfully developed, which resulted in excellent separation of (M+4) 2’-deoxyguanosine from the incubation mixture. The (M+4) 2’-deoxyguanosine was then fully protected in three steps and successfully incorporated, by solid supported synthesis, into a DNA oligomer containing 18 residues. Thus, synthesis of 8-oxo-deoxyguanosine on a bigger scale for its future incorporation into DNA oligomers is now a possibility resulting from this thesis work. We believe that these internal standards can be used to develop procedures that can make the measurement of oxidative DNA damage more accurate and sensitive.
Resumo:
Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.
Resumo:
Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.
Resumo:
Cocoa ( Theobroma cacao L. ) is an important allogamous tropical tree crop, whose centre of diversity is considered to be in Central America. Dry cocoa beans from five cocoa clones, and their intercrossed hybrids were analysed based on the variation of alkaloids and polyphenolic compounds contents, in order to gain insights on the heterosis and broad-sense heritability. Polyphenols and alkaloids were analysed at 280 nm by HPLC, using a Photodiode Array Detector (PDA); while anthocyanins were separated with the SEP-PAK Vac 6cc 1000 mg (waters) column and measured at 520 nm with a PDA. Dry cocoa beans displayed high content of purine alkaloids (2.1 and 8.8 mg g-1 for caffein and theobromine, respectively), and polyphenols (25 and 2978 µg g-1 for catechin and epicatechin, respectively). Among the five cocoa clones, SNK16 was the highest in purine alkaloid (caffein and theobromin) and flavanol (catechin and epicatechin); while T79/467 possessed the greatest quantity of cyanidin-3-galactoside and cyanidin-3-arabinoside. From all the parameters studied, anthocyanins (Cyanidin-3-galactoside and cyanidin-3-arabinoside) exhibited the highest level of heterosis. Parental genotypes SNK16 and T79/467 showed good aptitudes for the combination of characters because their reciprocal hybrids F5 and F9, distinguished themselves by better levels of mid-parent heterosis values. Besides, the heritability value in strict sense of this Cyanidin-3-galactoside was very high. Absence of significant difference between genotypes, coming from reciprocal crossbreeding for Cyanidin-3-galactoside, suggests that this character in cocoa would be nuclear contrary to purine alkaloids and flavan-3-ols, where their transmission to offsprings can be stated as cytoplasmic.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
AIM: To establish the efficacy and safety of a 7-d therapeutic regimen using omeprazole, bismuth suticitrate, furazolidone and amoxicillin in patients with peptic ulcer disease who had been previously treated with other therapeutic regimens without success. METHODS: Open cohort study which included patients with peptic ulcer who had previously been treated unsuccessfully with one or more eradication regimens. The therapeutic regimen consisted of 20 mg omeprazole, 240 mg colloidal bismuth subcitrate, 1000 mg amoxicillin, and 200 mg furazolidone, taken twice a day for 7 d. Patients were considered as eradicated when samples taken from the gastric antrum and corpus 12 wk after the end of treatment were negative for Helicobacter pylori (H pylori) (rapid urease test and histology). Safety was determined by the presence of adverse effects. RESULTS: Fifty-one patients were enrolled. The eradication rate was 68.8% (31/45). Adverse effects were reported by 31.4% of the patients, and these were usually considered to be slight or moderate in the majority of the cases. Three patients had to withdraw from the treatment due to the presence of severe adverse effects. CONCLUSION: The association of bismuth, furazolidone, amoxicillin and a proton-pump inhibitor is a valuable alternative for patients who failed to respond to other eradication regimens. It is an effective, cheap and safe option for salvage therapy of positive patients. (C) 2008 The WJG Press. All rights reserved.
Resumo:
Background: Increasing resistance to clarithromycin and nitroimidazole is the main cause of failure in the Helicobacter pylori eradication. The ideal retreatment regimen remains unclear, especially in developing countries, where the infection presents high prevalence and resistance to antibiotics. The study aimed at determining the efficacy, compliance and adverse effects of a regimen that included furazolidone, levofloxacin and lansoprazole in patients with persistent Helicobacter pylori infection, who had failed to respond to at least one prior eradication treatment regimen. Methods: This study included 48 patients with peptic ulcer disease. Helicobacter pylori infection was confirmed by a rapid urease test and histological examination of samples obtained from the antrum and corpus during endoscopy. The eradication therapy consisted of a 7-day twice daily oral administration of lansoprazole 30 mg, furazolidone 200 mg and levofloxacin 250 mg. Therapeutic success was confirmed by a negative rapid urease test, histological examination and 14C- urea breath test, performed 12 weeks after treatment completion. The Chi-square method was used for comparisons among eradication rates, previous treatments and previous furazolidone use. Results: Only one of the 48 patients failed to take all medications, which was due to adverse effects (vomiting). Per-protocol and intention-to-treat eradication rates were 89% (95% CI-89%-99%) and 88% (88-92%), respectively. Mild and moderate adverse effects were reported by 41 patients (85%). For patients with one previous treatment failure, the eradication rate was 100%. Compared to furazolidone-nave patients, eradication rates were lower in those who had failed prior furazolidone-containing regimen(s) (74% vs. 100%, p = 0.002). Conclusion: An empiric salvage-regimen including levofloxacin, furazolidone and lansoprazole is very effective in the eradication of Helicobacter pylori, particularly in patients that have failed one prior eradication therapy.
Resumo:
The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.
Resumo:
Human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyses the synthesis of the purine nucleoside monophosphates, IMP and GMP, by the addition of a 6-oxopurine base, either hypoxanthine or guanine, to the 1-beta-position of 5-phospho-U-D-ribosyl-1-pyrophosphate (PRib-PP). The mechanism is sequential, with PRib-PP binding to the free enzyme prior to the base. After the covalent reaction, pyrophosphate is released followed by the nucleoside monophosphate. A number of snapshots of the structure of this enzyme along the reaction pathway have been captured. These include the structure in the presence of the inactive purine base analogue, 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and PRib-PP. Mg2+, and in complex with IMP or GMP. The third structure is that of the immucillinHP.Mg2+.PPi complex, a transition-state analogue. Here, the first crystal structure of free human HGPRT is reported to 1.9 angstrom resolution, showing that significant conformational changes have to occur for the substrate(s) to bind and for catalysis to proceed. Included in these changes are relative movement of subunits within the tetramer, rotation and extension of an active-site alpha-helix (D137-D153), reorientation of key active-site residues K68, D137 and K165, and the rearrangement of three active-site loops (100-128, 165-173 and 186-196). Toxoplasina gondii HGXPRT is the only other 6-oxopurine phosphoribosyltransferase structure solved in the absence of ligands. Comparison of this structure with human HGPRT reveals significant differences in the two active sites, including the structure of the flexible loop containing K68 (human) or K79 (T gondii). (c) 2005 Elsevier Ltd. All rights reserved.