967 resultados para Pulsed gradient NMR spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portanto, o objetivo deste trabalho foi avaliar a influência de diferentes cultivares e sazonalidade do açaí utilizando a técnica de 1H NMR para criação de perfis de impressão digital associada a métodos quimiométricos, obtidos a partir de frutos geneticamente modificados (cultivada no controle agronômico) e o comércio na cidade de Belém

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed field gradient NMR is a powerful method for the measurement of diffusion coefficients in liquids and solids and has begun to attract much attention in the ionic liquids field. However, aspects of the methodology as traditionally applied to solutions may not be uniformly applicable in these more viscous and chemically complex systems. In this paper we present data which shows that the Pulsed Gradient Spin Echo (PGSE) method in particular suffers from intrinsic internal gradients and can produce apparent diffusion coefficients which vary by as much as 20% for different 1H nuclei within a given moleculean obvious anomaly. In contrast, we show that the Pulsed Gradient Stimulated Echo method does not suffer from this problem to the same extent and produces self-consistent data to a high degree of accuracy (better than 1%). This level of significance has allowed the detection, in this work, of subtle mixing effects in [C3mpyr][NTf2] and [C4mpyr][NTf2] mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this work a comparative study on density and transport properties, such as the conductivity (sigma), viscosity (eta) and self-diffusion coefficients (D), for electrolytes based on the lithium hexafluorophosphate, LiPF6; or on the lithium tris(pentafluoroethane)-trifluorophosphate, LiFAP dissolved in a binary mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) (50:50 wt%). For each electrolyte, the temperature dependence on transport properties over a temperature range from 10 to 80 degrees C and 20 to 70 degrees C for viscosity and conductivity, respectively, exhibits a non-Arrhenius behavior. However, this dependence is correctly correlated by using the Vogel-Tamman-Fulcher (VTF) type fitting equation. In each case, the best-fit parameters, such as the pseudo activation energy and ideal glass transition temperature were then extracted. The self-diffusion coefficients (D) of the Li+ cation and PF6- or FAP(-) anions species, in each studied electrolyte, were then independently determined by observing Li-3, F-19 and P-31 nuclei with the pulsed-gradient spin-echo (PGSE) NMR technique over the same temperature range from 20 to 80 degrees C. Results show that even if the diffusion of the lithium cation is quite similar in both electrolytes, the anions diffusion differs notably. In the case of the LiPF6-based electrolyte, for example at T approximate to 75 degrees C (high temperature), the self-diffusion coefficients of Li+ cations in solution (D (Li+)approximate to 5 x 10(-19) m(2) s(-1)) is 1.6 times smaller than that of PF6- anions (D (PF6-) = 8.5 x 10(-19) m(2) s(-1)), whereas in the case of the LiFAP-based electrolyte, FAP(-) anions diffuse at same rate as the Li+ cations (D (FAP(-)) = 5 x 10(-1) m(2) s(-1)). Based on these experimental results, the transport mobility of ions were then investigated through Stokes-Einstein and Nernst-Einstein equations to determine the transport number of lithium t(Li)(+), effective radius of solvated Li+ and of PF6- and FAP(-) anions, and the degree of dissociation of these lithium salts in the selected EC/DMC (50:50 wt%) mixture over a the temperature range from 20 to 80 degrees C. This study demonstrates the conflicting nature of the requirements and the advantage of the well-balanced properties as ionic mobility and dissociation constant of the selected electrolytes. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les hydrogels de polysaccharide sont des biomatériaux utilisés comme matrices à libération contrôlée de médicaments et comme structures modèles pour l’étude de nombreux systèmes biologiques dont les biofilms bactériens et les mucus. Dans tous les cas, le transport de médicaments ou de nutriments à l’intérieur d’une matrice d’hydrogel joue un rôle de premier plan. Ainsi, l’étude des propriétés de transport dans les hydrogels s’avère un enjeu très important au niveau de plusieurs applications. Dans cet ouvrage, le curdlan, un polysaccharide neutre d’origine bactérienne et formé d’unités répétitives β-D-(1→3) glucose, est utilisé comme hydrogel modèle. Le curdlan a la propriété de former des thermogels de différentes conformations selon la température à laquelle une suspension aqueuse est incubée. La caractérisation in situ de la formation des hydrogels de curdlan thermoréversibles et thermo-irréversibles a tout d’abord été réalisée par spectroscopie infrarouge à transformée de Fourier (FT-IR) en mode réflexion totale atténuée à température variable. Les résultats ont permis d’optimiser les conditions de gélation, menant ainsi à la formation reproductible des hydrogels. Les caractérisations structurales des hydrogels hydratés, réalisées par imagerie FT-IR, par microscopie électronique à balayage en mode environnemental (eSEM) et par microscopie à force atomique (AFM), ont permis de visualiser les différentes morphologies susceptibles d’influencer la diffusion d’analytes dans les gels. Nos résultats montrent que les deux types d’hydrogels de curdlan ont des architectures distinctes à l’échelle microscopique. La combinaison de la spectroscopie de résonance magnétique nucléaire (RMN) à gradients pulsés et de l’imagerie RMN a permis d’étudier l’autodiffusion et la diffusion mutuelle sur un même système dans des conditions expérimentales similaires. Nous avons observé que la diffusion des molécules dans les gels est ralentie par rapport à celle mesurée en solution aqueuse. Les mesures d’autodiffusion, effectuées sur une série d’analytes de diverses tailles dans les deux types d’hydrogels de curdlan, montrent que le coefficient d’autodiffusion relatif décroit en fonction de la taille de l’analyte. De plus, nos résultats suggèrent que l’équivalence entre les coefficients d’autodiffusion et de diffusion mutuelle dans les hydrogels de curdlan thermo-irréversibles est principalement due au fait que l’environnement sondé par les analytes durant une expérience d’autodiffusion est représentatif de celui exploré durant une expérience de diffusion mutuelle. Dans de telles conditions, nos résultats montrent que la RMN à gradients pulsés peut s’avérer une approche très avantageuse afin de caractériser des systèmes à libération contrôlée de médicaments. D’autres expériences de diffusion mutuelle, menées sur une macromolécule de dextran, montrent un coefficient de diffusion mutuelle inférieur au coefficient d’autodiffusion sur un même gel de curdlan. L’écart mesuré entre les deux modes de transport est attribué au volume différent de l’environnement sondé durant les deux mesures. Les coefficients d’autodiffusion et de diffusion mutuelle similaires, mesurés dans les deux types de gels de curdlan pour les différents analytes étudiés, suggèrent une influence limitée de l’architecture microscopique de ces gels sur leurs propriétés de transport. Il est conclu que les interactions affectant la diffusion des analytes étudiés dans les hydrogels de curdlan se situent à l’échelle moléculaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixtures of the plastic crystal material choline dihydrogen phosphate [Choline][DHP] and phosphoric acid, from 4.5 mol% to 18 mol% H3PO4, were investigated and shown to have significantly higher proton conductivity compared to the pure [Choline][DHP]. This was particularly evident from the electrochemical hydrogen reduction reaction and the proton NMR diffusion measurements, in addition to ionic conductivity measured from the impedance spectroscopy. The ionic conductivity was observed to increase by more than an order of magnitude in phase I (i.e. the highest temperature solid phase in [Choline][DHP]) reaching up to 10−2 S cm−1. The multinuclear NMR spectroscopy data suggest that, at least on the timescale of the NMR measurement, the H+ cations and [DHP] anions are equivalent in both phases. The pulsed field gradient NMR diffusion measurements of the 18 mol% acid sample indicate that all three ions are mobile, however the H+ diffusion coefficient is an order of magnitude higher than for the [Choline] cation or the [DHP] anion, and therefore conduction in these materials is dominated by proton conductivity. The thermal stability, as measured by TGA, is unaffected with increasing acid additions and remains high; i.e. no significant mass loss below 200 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by 1H NMR spectroscopy. xCE-PVP complex formation was confirmed by 1H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). 1H1H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV–vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described in this thesis is directed to the examination of the hypothesis that ultrasound may be used to perturb molecular motion in the liquid phase. These changes can then be detected by nuclear magnetic resonance (NMR) in spin-lattice and spin-spin relaxation times. The objective being to develop a method capable of reducing the pulsed NMR acquisition times of slowly relaxing nuclei. The thesis describes the theoretical principles underlying both NMR spectroscopy and ultrasonics with particular attention being paid to factors that impinge on testing the above hypothesis. Apparatus has been constructed to enable ultrasound at frequencies between 1 and 10 mega-hertz with a variable power up to 100W/cm-2 to be introduced in the NMR sample. A broadband high frequency generator is used to drive PZT piezo-electric transducer via various transducer to liquid coupling arrangements. A commercial instrument of 20 kilo-hertz has also been employed to test the above hypothesis and also to demonstrate the usefulness of ultrasound in sonochemistry. The latter objective being, detection of radical formation in monomer and polymer ultrasonic degradation. The principle features of the results obtained are: Ultrasonic perturbation of T1 is far smaller for pure liquids than is for mixtures. The effects appear to be greater on protons (1H) than on carbon-13 nuclei (13C) relaxation times. The observed effect of ultrasonics is not due to temperature changes in the sample. As the power applied to the transducer is progressively increased T1 decreases to a minimum and then increases. The T1's of the same nuclei in different functional groups are influenced to different extents by ultrasound. Studies of the 14N resonances from an equimolar mixture of N, N-dimethylformamide and deuterated chloroform with ultrasonic frequencies at 1.115, 6, 6.42 and 10 MHz show that as the frequency is increased the NMR signal to noise ratio decreases to zero at the Larmor frequency of 6.42 MHz and then again rises. This reveals the surprising indication that an effect corresponding to nuclear acoustic saturation in the liquid may be observable. Ultrasonic irradiation of acidified ammonium chloride solution at and around 6.42 MHz appears to cause distinctive changes in the proton-nitrogen J coupling resonance at 89.56 MHz. Ultrasonic irradiation of N, N-dimethylacetamide at 2 KHz using the lowest stable power revealed the onset of coalescence in the proton spectrum. The corresponding effect achieved by direct heating required a temperature rise of approximately 30oC. The effects of low frequency (20 KHz) on relaxation times appear to be nil. Detection of radical formation proved difficult but is still regarded as the principle route for monomer and polymer degradation. The initial hypothesis is considered proven with the results showing significant changes in the mega-hertz region and none at 20 KHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational preferences of hydrazinecarbothioamide (HCTA, H2NNHCSNH2) in its basic and N-protonated (PHCTA, H3NNNHCSNH2) forms have been studied by 1H and 13C NMR spectroscopy and by theoretical LCAO-MO methods (ab initio, CNDO/2 and EHT). The hindered rotation around the C---N bond has been investigated by a total line shape analysis for the thioamide protons and by the three MO methods. Changes in the molecular conformation and electronic structure on protonation are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubilization of bilirubin IX-Alpha in aqueous solution by sodium cholate micelles has been examined by 270 MHz 1H-NMR spectroscopy. Incorporation of bilirubin into the micelles is accompanied by specific shifts of bilirubin vinyl and bridgehead protons and the C18 and C19 methyl groups of the steroid. The observed chemical shifts show a monotonic concentration dependence suggesting that changes in aggregation size are continuous. Nuclear Overhauser effects (NOE) have been shown to be a useful probe or micellization. A 4:1 cholate/bilirubin mixture has been investigated by difference NOE spectroscopy. The observation of intermolecular nuclear Overhauser effects between peripheral protons of bilirubin and cholate are diagnostic of spatially proximate groups. Inter-cholate nuclear Overhauser effects increase in magnitude upon bilirubin incorporation suggesting closer packing of steroid molecules on solubilization of the pigment. Intramolecular nuclear Overhauser effects observed for solubilized bilirubin are consistent with a compact intramolecularly hydrogen-bonded conformation resembling that determined for bilirubin in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of 13C-NMR spectroscopy of oriented systems to problems of biological importance has been suggested and used to investigate non-planar distortions in substituted amides—models for peptides. The studies in conjunction with the proton magnetic resonance data on 5N-[13C]methyl[13C]formamide oriented in a nematic solvent provide all the direct dipolar couplings between the interacting nuclei in the system. When the 13C- and the 1H-NMR experiments are performed under non-identical conditions, 22 different direct dipolar couplings are obtained. It is demostrated that they can be used to determine unambiguously non-planar distortions around the nitrogen atom together with other geometrical data and the molecular order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthesis is a chemical process in which the energy of the light quanta is transformed into chemical energy. Chlorophyll (Chl) molecules play a key role in photosynthesis; they function in the antennae systems and in the photosynthetic reaction center where the primary charge separation (CS) takes place. Bio-inspired mimicry of the CS is an essential unit in dye-sensitized solar cells. Aim of this study was to design and develop electron donor-acceptor (EDA) pairs from Chls and fullerenes (C60) or carbon nanotubes (CNT). The supramolecular approach was chosen, as long synthetic sequences required by the covalent approach lead to long reaction schemes and low yields. Here, a π-interaction between soluble CNTs and Chl was used in EDA construction. Also, a beta-face selective two-point bound Chl-C60 EDA was introduced. In addition, the photophysical properties of the supramolecular EDA dyads were analyzed. In organic chemistry, nuclear magnetic resonance (NMR) spectroscopy is the most vital analytical technique in use. Multi-dimensional NMR experiments have enabled a structural analysis of complex natural products and proteins. However, in mixture analysis NMR is still facing difficulties. In many cases overlapping signals can t be resolved even with the help of multi-dimensional experiments. In this work, an NMR tool based on simple host-guest chemistry between analytes and macromolecules was developed. Diffusion ordered NMR spectroscopy (DOSY) measures the mobilities of compounds in an NMR sample. In a liquid state NMR sample, each of the analytes has a characteristic diffusion coefficient, which is proportional to the size of the analyte. With normal DOSY experiment, provided that the diffusion coefficients of the analytes differ enough, individual spectra of analytes can be extracted. When similar sized analytes differ chemically, an additive can be introduced into the sample. Since macromolecules in a liquid state NMR sample can be considered practically stationary, even faint supramolecular interaction can change the diffusion coefficient of the analyte sufficiently for a successful resolution in DOSY. In this thesis, polyvinylpyrrolidone and polyethyleneglycol enhanced DOSY NMR techniques, which enable mixture analysis of similar in size but chemically differing natural products, are introduced.