878 resultados para Prospective temporal control
Resumo:
The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.
Resumo:
Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination. This has significant implications for the future of monitoring and regulation of heavy metal contamination within Deception Bay.
Resumo:
Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.
Resumo:
Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, enrichment factors and Principal Component Analysis –Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.
Resumo:
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.
Resumo:
Background The use of the internet to access information is rapidly increasing; however, the quality of health information provided on various online sites is questionable. We aimed to examine the underlying factors that guide parents' decisions to use online information to manage their child's health care, a behaviour which has not yet been explored systematically. Methods Parents (N=391) completed a questionnaire assessing the standard theory of planned behaviour (TPB) measures of attitude, subjective norm, perceived behavioural control (PBC), and intention as well as the underlying TPB belief-based items (i.e., behavioural, normative, and control beliefs) in addition to a measure of perceived risk and demographic variables. Two months later, consenting parents completed a follow-up telephone questionnaire which assessed the decisions they had made regarding their use of online information to manage their child's health care during the previous 2 months. Results We found support for the TPB constructs of attitude, subjective norm, and PBC as well as the additional construct of perceived risk in predicting parents' intentions to use online information to manage their child's health care, with further support found for intentions, but not PBC, in predicting parents' behaviour. The results of the TPB belief-based analyses also revealed important information about the critical beliefs that guide parents' decisions to engage in this child health management behaviour. Conclusions This theory-based investigation to understand parents' motivations and online information-seeking behaviour is key to developing recommendations and policies to guide more appropriate help-seeking actions among parents.
Resumo:
Aim The aim of this study was to analyse the effect of an 8-week multimodal physiotherapy programme (MPP), integrating physical land-based therapeutic exercise (TE), adapted swimming and health education, as a treatment for patients with chronic non-specific neck pain (CNSNP), on disability, general health/mental states and quality of life. Methods 175 CNSNP patients from a community-based centre were recruited to participate in this prospective study. Intervention: 60-minute session (30 minutes of land-based exercise dedicated to improving mobility, motor control, resistance and strengthening of the neck muscles, and 30 minutes of adapted swimming with aerobic exercise keeping a neutral neck position using a snorkel). Health education was provided using a decalogue on CNSNP and constant repetition of brief advice by the physiotherapist during the supervision of the exercises in each session. Study outcomes: primary: disability (Neck Disability Index); secondary: physical and mental health states and quality of life of patients (SF-12 and EuroQoL-5D respectively). Differences between baseline data and that at the 8-week follow-up were calculated for all outcome variables. Results Disability showed a significant improvement of 24.6% from a mean (SD) of 28.2 (13.08) at baseline to 16.88 (11.62) at the end of the 8-week intervention. All secondary outcome variables were observed to show significant, clinically relevant improvements with increase ranges between 13.0% and 16.3% from a mean of 0.70 (0.2) at baseline to 0.83 (0.2), for EuroQoL-5D, and from a mean of 40.6 (12.7) at baseline to 56.9 (9.5), for mental health state, at the end of the 8-week intervention. Conclusion After 8 weeks of a MPP that integrated land-based physical TE, health education and adapted swimming, clinically-relevant and statistically-significant improvements were observed for disability, physical and mental health states and quality of life in patients who suffer CNSNP. The clinical efficacy requires verification using a randomised controlled study design.
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.
Resumo:
Introduction and Aims: Holiday periods are potentially a time for increased substance use as social events and private parties are more common. Data on community illicit drug consumption during holiday periods are limited. Besides existing methods for determining drug use, such as population surveys, one emerging method is to measure illicit drugs and/or their metabolites in wastewater samples. This study examined the change in consumption of cannabis, methamphetamine, cocaine and 3,4- methylenedioxymethamphetamine in three different types of areas (an inland semi-rural area, a coastal urban area and a vacation island) with respect to holiday times. Design and Methods: Samples were collected at the inlet of the major wastewater treatment plant in each area during a key annual holiday (i.e. the summer holiday including Christmas and New Year) and control period. Illicit drug residues in the daily composited samples were measured by liquid chromatography coupled with tandem mass spectrometry. Results: Drug use varied substantially among the three areas within each monitoring period as well as between the holiday and control period within each area. Use consistently increased and peaked over New Year particularly for cocaine and 3,4-methylenedioxymethamphetamine whereas cannabis and methamphetamine were relatively less subjected to holiday times in all the areas. Discussion and Conclusions: Wastewater sampling and analysis provides higher spatio-temporal resolution than national surveys and supplements drug epidemiology studies originating primary in metropolitan locations. Such data is essential for policy makers to plan potential intervention strategies associated with these illicit substances in regional areas and other settings besides urban areas in the future.
Resumo:
Giant Cell Arteritis (GCA) is the most common vasculitis affecting the elderly. Archived formalin-fixed paraffin-embedded (FFPE) temporal artery biopsy (TAB) specimens potentially represent a valuable resource for large-scale genetic analysis of this disease. FFPE TAB samples were obtained from 12 patients with GCA. Extracted TAB DNA was assessed by real time PCR before restoration using the Illumina HD FFPE Restore Kit. Paired FFPE-blood samples were genotyped on the Illumina OmniExpress FFPE microarray. The FFPE samples that passed stringent quality control measures had a mean genotyping success of >97%. When compared with their matching peripheral blood DNA, the mean discordant heterozygote and homozygote single nucleotide polymorphisms calls were 0.0028 and 0.0003, respectively, which is within the accepted tolerance of reproducibility. This work demonstrates that it is possible to successfully obtain high-quality microarray-based genotypes FFPE TAB samples and that this data is similar to that obtained from peripheral blood.
Resumo:
Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.
Resumo:
Helicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
We review key issues, available approaches and analyses to encourage and assist practitioners to develop sound plans to evaluate the effectiveness of weed biological control agents at various phases throughout a program. Assessing the effectiveness of prospective agents before release assists the selection process, while post-release evaluation aims to determine the extent that agents are alleviating the ecological, social and economic impacts of the weeds. Information gathered on weed impacts prior to the initiation of a biological control program is necessary to provide baseline data and devise performance targets against which the program can subsequently be evaluated. Detailed data on weed populations, associated plant communities and, in some instances ecosystem processes collected at representative sites in the introduced range several years before the release of agents can be compared with similar data collected later to assess agent effectiveness. Laboratory, glasshouse and field studies are typically used to assess agent effectiveness. While some approaches used for field studies may be influenced by confounding factors, manipulative experiments where agents are excluded (or included) using chemicals or cages are more robust but time-consuming and expensive to implement. Demographic modeling and benefit–cost analyses are increasingly being used to complement other studies. There is an obvious need for more investment in long-term post-release evaluation of agent effectiveness to rigorously document outcomes of biological control programs.
Resumo:
The permanent mammalian kidney (metanephros) develops as a result of complex reciprocal tissue interactions between a ureteric epithelium and the renal mesenchyme. The overall goal of the research in this thesis was to gain data that will eventually help in elucidating the formation of congenital renal malformations. The experiments in my thesis aimed to reveal the mechanisms by which Notch, Wnt and GDNF/Ret signalling pathways regulate the development of functional kidney. The function of Notch pathway was studied by a transgenic mouse model, where it was shown that overactivation of Notch signalling disturbs kidney development and alters the expression of Gdnf and Ret/GFRa1. This indicates that Notch signalling interplays with GDNF/Ret in the regulation of the primary ureteric budding and its subsequent branching. The data also suggested that strict spatio-temporal regulation of these two pathways is required for determination of ureteric tip-identity, which appeared to be crucial for the branch formation. The function of Wnt signalling in the ureteric morphogenesis was studied by in vivo and in vitro methods to show that a canonical pathway is required for ureteric branching. Stabilisation and deletion of the canonical pathway mediator, b-catenin specifically in the ureteric epithelium result in renal aplasia/hypodysplasia. These defects originate from severe blockage of ureteric branching due to the disrupted Ret signalling. Consequently, ureteric tip specific markers are lost and ureteric stalk identity is expanded throughout the whole epithelium. Thus, the data demonstrates that the Wnt/b-catenin pathway plays an essential role in the patterning and branching of the ureteric epithelium. A novel in vitro method was generated and utilised in nephron induction studies to reveal the mechanisms through which nephrogenesis is induced. Transient GSK3 inhibition results in stabilisation of b-catenin in the isolated renal mesenchyme, which efficiently triggers nephron formation. Also genetic stabilisation of b-catenin specifically in the mesenchyme results in spontaneous nephrogenesis. The results show that activation of the canonical Wnt pathway is sufficient to initiate nephrogenesis, and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes. Taken together, this thesis demonstrates Notch and Wnt signalling pathways as novel regulators of ureteric branching morphogenesis, and that activation of the canonical Wnt pathway is sufficient for nephron induction. The studies also indicate that the Notch and Wnt pathways cross-talk with GDNF/Ret signalling in the patterning of ureteric epithelium.