964 resultados para Production rationalization method
Candida tropicalis biofilms: biomass, metabolic activity and secreted aspartyl proteinase production
Resumo:
According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation.
Resumo:
Currently, prebiotics are all carbohydrates of relatively short chain length. An important group is the fructooligosaccharides, which are a special kind of prebiotics associated to their selective stimulation of the activity of certain groups of colonic bacteria that have a positive and beneficial effect on intestinal microbiota, reducing incidence of gastrointestinal infections, respiratory and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of fructooligosaccharides, such as solid-state fermentation utilizing various agroindustrial by-products. By optimizing the culture parameters, fructooligosaccharides yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of fructooligosaccharides. This paper is an overview on the results of recent studies on fructooligosacharides biosynthesis, physicochemical properties, sources, biotechnological production and applications.
Resumo:
This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.
Resumo:
Dairy sludge generated at Glanbia Ingredients Ltd., Kilkenny has up until now been landspread. This study investigated the feasibility of using earthworms to vermicompost the sludge as an alternative method of treatment. It was found that high levels of ammonia in the sludge led to earthworm fatality but that by manually aerating the sludge the ammonia could be volatilised or by adding zeolite the ammonia could be absorbed, thus solving the problem. In a medium scale trial, the earthworm species Dendrobaena veneta and Eisenia fetida dominated the polyculture. Earthworms grew and generated cocoons during vermicomposting. During vermicomposting no leachate was generated. Nutrient changes took place during vermicomposting. There were high levels of nitrate, increased calcium and sulphate in the vermicomposted dairy sludge. The amount of magnesium, potassium and chloride did not change, while phosphate was undetectable after vermicomposting. The levels of nitrate and phosphate were good indicators of the extent of vermicomposting. The vermicomposted dairy sludge provided improved growth and yields of radishes and barley compared to the dairy sludge and control. Compared to the vermicompost, the dairy sludge provided heavier ryegrass yields and more marigolds with larger flower diameters. Generally, it is the amount of phosphate in dairy sludge that dictates how much can be applied as a fertiliser on land. Vermicomposting reduced the amount of phosphate to an undetectable level but on the other hand created a problem of high nitrate levels. In a pot trial with grass grown in vermicompost the nitrate leached from the vermicompost. In field conditions the leaching of nitrate might occur and could cause an increased risk of contamination of groundwater and watercourses.
Resumo:
At the moment there is a lack of methodological approaches to formalization of management of innovative projects relating to production systems, as well as to adaptation and practical use of the existing approaches. This article is about one potential approach to the management of innovative projects, which makes the building of innovative process models possible based on objective approach. It outlines the frameworks for the building of innovative project models, and describes the method of transition from conceptual modelling to innovative project management. In this case, the model alone and together with parameters used for evaluation of the project may be unique and depends on the special features of the project, preferences of decision-making person, and production and economic system in which it is to be implemented. Unlike existing approaches, this concept does not place any restrictions on types of models and makes it possible to take into account the specificities of economic and production systems. Principles embodied in the model allow its usage as a basis for simulation model to be used in one of specialized simulation systems, as well as for information system providing information support of decision-making process in production and economic systems both newly developed by the company (enterprise) and designed on the basis of available information systems that interact through the exchange of data. In addition, this article shows that the development of conceptual foundations of innovative project management in the economic and production systems is inseparable from the development of the theory of industrial control systems, and their comprehensive study may be reduced to a set of elements represented as certain algorithms, models and evaluations. Thus, the study of innovative process may be conducted in both directions: from general to particular, and vice versa.
Resumo:
Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.
Resumo:
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Resumo:
Strains of enterotoxigenic Escherichia coli (ETEC) are responsible for significant rates of morbidity and mortality among children, particularly in developing countries. The majority of clinical and public health laboratories are capable of isolating and identifying Salmonella, Shigella, Campylobacter, and Escherichia coli O157:H7 from stool samples, but ETEC cannot be identified by routine methods. The method most often used to identify ETEC is polymerase chain reaction for heat-stable and heat-labile enterotoxin genes, and subsequent serotyping, but most clinical and public health laboratories do not have the capacity or resources to perform these tests. In this study, polyclonal rabbit and monoclonal mouse IgG2b antibodies against ETEC heat-labile toxin-I (LT) were characterized and the potential applicability of a capture assay was analyzed. IgG-enriched fractions from rabbit polyclonal and the IgG2b monoclonal antibodies recognized LT in a conformational shape and they were excellent tools for detection of LT-producing strains. These findings indicate that the capture immunoassay could be used as a diagnostic assay of ETEC LT-producing strains in routine diagnosis and in epidemiological studies of diarrhea in developing countries as enzyme linked immunosorbent assay techniques remain as effective and economical choice for the detection of specific pathogen antigens in cultures.
Resumo:
A total of 187 isolates from several clinical specimens were identified to species level as 129 Staphylococcus aureus strains and 58 coagulase-negative staphylococci (CNS) strains by the API Staph System (Biomerieux). Slime production was detected both by the conventional Christensen's method as well as by the Congo red agar method. Seventy-two strains of staphylococci isolates (38.5%) were found to be slime producers by Christensen's test tube method whereas 58 strains (31%) were slime positive with Congo red agar method. There was no statistically significant difference between the two methods for the detection of slime production (P > 0.05). Susceptibility of isolates against antimicrobial agents was tested by the disk diffusion method. Staphylococcal species had resistance to one or more antibiotics. Among the various antimicrobial agents, oxacillin (71.1%) and erythromycin (47.1%) showed higher resistance than most of the agents used against all isolates. Oxacillin resistant S. aureus (ORSA) and oxacillin resistant coagulase-negative staphylococci (ORCNS), 97 (75.2%) and 36 (62.1%) respectively were frequently observed in strains isolated from clinical materials. Among the ORSA strains, two strains were resistant to vancomycin. Moreover, 96 (74.4%) of 129 S. aureus strains were positive for blactamase enzyme. However, 78 (81.25%) of 96 b-lactamase positive S. aureus strains were b-lactamase positive ORSA isolates, but none of them had vancomycin resistance.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
The sandfly Phlebotomus perniciosus is the most widespread vector of Leishmania infantum in Spain. Laboratory colonisation represents the most feasible source of information on the biology of these insects, but in conducting any study, the density of individuals in the colony may drop to such an extent that it is sometimes difficult to recover the initial population levels. A new technique was tested for the recovery of sandfly eggs in three different colonies; the recovery rate was studied by comparing the standard method of mass rearing with this new method of colony management. The results demonstrate a mean increase of 18.4% in adult production, a growth in colony productivity that justifies the inclusion of this process in the routine maintenance of any colony of sandflies.
Resumo:
The aim of this study was to characterize two metallo-β-lactamases (MBLs)-producing Pseudomonas aeruginosa clinical isolates showing meropenem susceptibility. Antimicrobial susceptibility was assessed by automated testing and Clinical and Laboratory Standards Institute agar dilution method. MBL production was investigated by phenotypic tests. Molecular typing was determined by pulsed field gel electrophoresis (PFGE). MBL-encoding genes, as well as their genetic context, were identified by polymerase chain reaction (PCR) and sequencing. The location of blaIMP-16 was determined by plasmid electrophoresis, Southern blot and hybridization. Transcriptional levels of blaIMP-16, mexB, mexD, mexF, mexY, ampC and oprD were determined by semi-quantitative real time PCR. The P. aeruginosa isolates studied, Pa30 and Pa43, showed imipenem and meropenem susceptibility by automated testing. Agar dilution assays confirmed meropenem susceptibility whereas both isolates showed low level of imipenem resistance. Pa30 and Pa43 were phenotypically detected as MBL producers. PFGE revealed their clonal relatedness. blaIMP-16 was identified in both isolates, carried as a single cassette in a class 1 integron that was embedded in a plasmid of about 60-Kb. Pa30 and Pa43 overexpressed MexAB-OprM, MexCD-OprJ and MexXY-OprM efflux systems and showed basal transcriptional levels of ampC and oprD. MBL-producing P. aeruginosa that are not resistant to meropenem may represent a risk for therapeutic failure and act as silent reservoirs of MBL-encoding genes.
Resumo:
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .
Resumo:
Brazilian milk production has grown steadily and in 2004 the country became self-sufficient in dairy production. This article develops possible scenarios for the milk production chain in Brazil for the year 2020 in order to contribute to decisions that must be made by stakeholders. A literature review on foresight and the use of scenarios was conducted, and a scenario writing approach based on Wright and Spers (2006) was adopted, which includes the use of the Delphi method, Michael Porter's Five Competitive Forces model, Interpretative Structural Modeling (ISM) (WRIGHT, 1991) and quantitative projections. This methodology provided four scenarios, with quantitative and qualitative elements: two exploratory scenarios ("milk, the new agribusiness star" and "a wasted future"), a most probable scenario ("continuous but uneven growth") and a desired scenario ("competitive family agriculture"). Overall, it is possible to note many market opportunities, as well as niche markets and the strengthening of cooperatives. Future prospects are also favorable to the dairy industry in general, but nearly all scenarios point to a concentration in the industrial sphere.